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Proportional, integral, and deriuatiue (PID) parameters are obtained for general pro- 
cess models by approximating the feedback form of an IMC controller with a Maclaurin 
series in the Laplace uariable. These PID parameters yield closed-loop responses that 
are closer to the desired responses than those obtained by PID controllers tuned by other 
methods. The improvement in closed-loop control peformance becomes more promi- 
nent as the dead time of the process model increases. A new design method for two 
degree of freedom controllers is also proposed. Such controllers are essential for unsta- 
ble processes and provide significantly improved dynamic performance ouer single de- 
gree of freedom controllers for stable processes when the disturbances enter through the 
process. 

Introduction 
Since the proportional, integral, and derivative (PID) con- 

troller finds widespread use in the process industries, a great 
deal of effort has been directed at finding the best choices 
for the controller gain, integral, and derivative time constants 
for various process models (Ziegler and Nichols, 1942; Cohen 
and Coon, 1953; Lopez et al., 1967; Smith et al., 1975; Rivera 
et al., 1986; Chien and Fruehauf, 1990; Tyreus and Luyben, 
1992; Sung et al., 1995; Lee et al., 1996). Among the per- 
formance criteria used for PID controller parameter tuning, 
the criterion to  keep the controlled variable response close to 
the desired closed-loop response has gained widespread ac- 
ceptance in the chemical process industries because of its 
simplicity, robustness, and successful practical applications. 
The IMC (internal model control)-PID tuning method (Rivera 
et al., 1986; Morari and Zafiriou, 1989) and the direct synthe- 
sis method (Smith et al., 1975) are typical of the tuning meth- 
ods based on achieving a desired loop response. They obtain 
the PID controller parameters by first computing the con- 
troller which gives the desired closed-loop response. Gener- 
ally, this controller is rather more complicated than a PID 

Correspondence concerning this articlc should he addrased 10 S .  Park or C .  
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controller. However, by clever approximations of the process 
model, the controller form can be reduced to that of a PID 
controller, or a PID controller cascaded with a first- or sec- 
ond-order lag. An important advantage of such methods is 
that the closed-loop time constant, which is the same as the 
IMC filter time constant, provides a convenient tuning pa- 
rameter to adjust the speed and robustness of the closed-loop 
system. Intuitively, one would expect that as the desired 
closed-loop time constant increases, the PID controller gain 
and derivative time constants would decrease. The PID con- 
troller gain does indeed behave as expected. However, most 
tuning methods yield derivative and integral time constants 
that are independent of the closed-loop time constant. Also, 
current tuning methods yield PID parameters only for a re- 
stricted class of process models. There is no general method- 
ology for arbitrary process models other than approximating 
them with a first- or second-order models and applying tun- 
ing rulcs for thc approximate models. 

In this article, we generalize the IMC-PID approach and 
obtain the PID paramctcrs for general models by approxi- 
mating thc ideal controller with a Maclaurin series in the 
Laplace variable. It turns out that the PID parameters so 
obtained provide somewhat better closed-loop responses than 
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those obtained previously. Further, all of the PID parameters 
depend on thc desired closed-loop time constant in a manner 
consistent with engineering intuition. Several examples are 
provided to demonstrate the method and to compare results 
with alternate tuning methods. 

Development of General Tuning Algorithm for PID 
Controllers 
Single degree of freedom controllers (4, and G ,  = 1 in 
F iere  1) 

Consider stable (that is, no right half plane poles) process 
models of the form 

where p,,(s) i\  the portion of the model inverted by the con- 
troller (it mu5t be minimum phase), p,(s) is the portion of 
the model not inverted by the controller (it is usually nonmin- 
imum phase, that is, it contains dead times and/or right half 
plane zeros) and p,(O) = 1. 

Often, the portion of the model not inverted by the con- 
troller is chosen to be all pass (that is, of the form 

T , ,  7, > 0 ; 0 < lj < 1 

since this choice gives the best least-squares response. The 
requirement that pJ0)  = 1 is necessary for the controlled 
variable to track its set point. 

Our aim is to choose the controller G, of Figure 1 to give 
the desired closed-loop response, C/R of 

The term IAAs +l)’ functions as a filter with an adjustable 
time constant A, and an order r chosen so that the controller 
G, is realizable. 

The ideal controller G, that yields the desired loop re- 
sponse given by Eq. 2 perfectly is given by 

where q is thc IMC controller 

Although the resulting controller is physically realizable, it 
does not have the standard PID form. Therefore, the main 
issue for developing the tuning rule to give the desired 
closed-loop response is to find the PID parameters lhat ap- 
proximate the response of the ideal controller given by Eq. 3. 
One approach is to force the controller transfer function given 
by Eq. 3 into the standard PID form by approximating the 
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Figure 1. Feedback control system. 

dead time with a low-order Pad6 approximation. The tuning 
rules given by Smith et al. (1975), Rivera et al. (19861, and 
Morari and Zafiriou (1989) are based on this approach. We 
propose a new approach to obtain the PID controller that 
approximates the ideal controller given by Eq. 3 more closely. 

The controller G, can be approximated by a PID con- 
troller by first noting that it can be expressed as 

Whereas G, has a pole at the origin because ~ ~ ( 0 )  is one, 
f ( s )  will not have such a pole because the derivative of 
((As + 1)‘ - p,(s))/s at the origin is never zero for r greater 
than zero. 

Expanding G,(s) in a Maclaurin series in s gives 

It should be noted that the resulting controller has the pro- 
portional term, integral term and derivative term, in addition 
to an infinite number of higher-order derivative terms. Since 
the controller given by Eq. 5 is equivalent to the ideal con- 
troller given by Eq. 3, the desired closed-loop response can 
be perfectly achieved if all terms in Eq. 5 are implemented. 
In practice, however, it is impossible to implement the con- 
troller given by Eq. 5 because of the infinite number of high- 
order derivative terms. In fact, in an actual control situation 
low and middle frequencies are much more important than 
high frequencies, and only the first three terms in Eq. 5 are 
often sufficient to achieve the desired closed-loop perfor- 
mance. The controller given by Eq. 5 can be approximated to 
the PID controller by using only the first three terms (l/s, 1, 
s) in Eq. 5 and truncating all other high-order terms ( s 2 ,  s3, . 
.). The first three terms of the above expansion can be inter- 
preted as the standard PID controller given by 

1 

where 
K ,  = f ‘(0) (7a) 
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In order to evaluate the PID controller parameters given by 
Eqs. 7a-7c, we let 

Then, by Maclaurin series expansion we get 

Using Eq. 8, the function f ( s )  and its first and second deriva- 
tives, all evaluated at the origin, are given by 

(9a) 

where 

The above formulas can be used to obtain the controller gain, 
and integral and derivative time constants as analytical func- 
tions of the process model parameters and the closed-loop 
time constant A, as is done in the next scction for several 
examples. 

The derivative and/or integral time constants computed 
from Eq. 7 can be negative for some process models indepen- 
dent of the choice of the closed-loop time constant A. When 
this occurs, it is because a simple PID controller cannot 
achieve the desired critically damped closed-loop behavior. 
In this case the designer has at least two alternatives. One 
alternative is to modify the desired closed-loop behavior from 
critically damped to underdamped by choosing an under- 
damped filter. The designer must then seek a damping ratio 
for the filter that results in positive integral and derivative 
PID parameters. Rather than such an approach, we recom- 
mend replacing the simple PID controller with a PID con- 
troller cascaded with a first-or second-order lag of the form 
l/(as + 1 )  or 1/( P 2 s 2  + Pls + l), respectively. To obtain a 
PID controller cascaded by a first-order lag [that is, K,(1+ 
1/r1s + ~ ~ s ] / ( a s  + 111, we rewrite G,(s) as 

where 

(10) 
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Now, we expand the quantity f ( s ) h ( s )  in a Maclaurin series 
about the origin and choose the parameter a so that the 
third-order term in the expansion becomes zero. 

The expansion of Eq. 10 then becomes 

Selecting the lag parameter a to drop the third-order term 
gives 

a = - f ” ’ (0) /3 f ” (0)  (12a) 

and the PID parameters are 

Again, the PID - lag controller is 

To obtain a PID controller cascaded with a second-order lag, 
we write G,.(s) from Eq. 3 as 

where N ( s )  and D ( s )  are polynomials obtained by substitut- 
ing high-order ( 2 4) Pad6 approximations for the exponen- 
tial terms in p,(s)  and p,(s). This gives 

where a,, P,(A) 2 0 and P,(A), k ( A )  are functions of A. 

tor and higher than third order in the denominator gives 
Dropping terms higher than second-order in the numera- 

The controller given by Eq. 15 can be viewed as an ideal PID 
controller cascaded with a second-order lag or as a floating 
integral controller cascaded with a second-order lead-lag 
transfer function. The controller parameters arc K ,  = k(A)*  

The second-order lag is given by ($4 P2s2 + P , s  + 1). All 
of the parameters except possibly K ,  are positive. 

It is relatively easy to  write a macro for Program CC (Com- 
mercial software for control system design and analysis, which 
is available from Systems Technology Inc. in Hawthorne, CA) 
to compute the parameters for the three PID controllers given 
by Eqs. 7, 12 and 15. One such macro, which we call PIDIMC, 

T I ;  7, = a l ;  Tn = a#,. 
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is an ASCII file that can be obtained either via the Internet 
at http://k2.scl.cwru.edu/cse/eche/faculty/brosilow.htm or 
by anonymous ftp to cheme.cwru.edu (You must change di- 
rectory (cd) to pub/process-control/ProgramCC). Input pa- 
rameters for the macro are: the name of the part of the model 
that the controller inverts, the name of the part of the model 
(exclusive of the dead time) that the controller does not in- 
vert, the dead time, the order of‘ the closed-loop lag r [ Pm(s)] ,  
the value of the lag time constant A, and, finally, a five-letter 
identifier (optional). The macro also computes and displays 
the closed-loop responses for each of the three types of PID 
controller as well as the IMC response. 

The same calculations are also performed by a MATLAB 
program that we call IMCTUNE. This program can also be 
obtained at the Internet address given above, as well as by 
anonymous ftp to cheme.cwru.edu/pub/process-con- 
trol/IMCTUNE. 

Two degree of freedom controllers 
Two degree of freedom controllers are useful when the lag 

in G, of Figure 1 is on the order of, or larger than, the 
process lag in G. Such controllers also provide significantly 
improved dynamic performance over single degree of free- 
dom controllers when the process is unstable and disturb- 
ances enter through the process (that is, G, contains the same 
unstable lags as the process). ‘The design of two degree of 
freedom controllers proceeds by specifying the desired 
closed-loop set point response and an approximate distur- 
bance response. This is most easily accomplished by selecting 
the feedback controller G, as 

(16) 

Notice, that the form of G, in Eq. 16 is similar to that in 
Eq. 3, the difference being that the IMC controller q in Eq. 3 
has been replaced by two controllers q and q,. 

With the above choice for the controller G,, the closed-loop 
set point and disturbance responses become 

(18) 

If we choose y, as the inverse of q,, and if we select q as in 
Eq. 3, then the set point response is the same as that given by 
Eq. 2 for the single degree of freedom controller. 

To shape the disturbance response given by Eq. 18, com- 
mon practice IS to select qd so that the zeros of (1 - Gqq,) 
cancel the large, or unstable, time constants in G,. 
A convenient form for q, is 

The order, rn, of qd is equal to the number of poles of G, to 
be canceled by the zeros of (1 -- Gqq,). Usually, m is on the 
order of one or two. The constants a, are chosen to cancel 
the desired poles in G,. 

Once the closed-loop time constant A has been selected, 

and the a, calculated, then G, from Eq. 16 can be expanded 
in a Maclaurin series, just as was done for the single degree 
of freedom controller. The only difference is that care must 
be taken to cancel common factors in the numerator and de- 
nominator of G, before the expansion. Common factors al- 
ways occur when G contains one or more of the poles of G,, 
which are removed by the zeros of (1 - Gqq,). In this case, 
the IMC controller q has common zeros with (1 - Gqq,), and 
these common factors must be removed before expansion. 

One final caution in the design of two degree of freedom 
controllers is that the suggested selection procedure for the 
parameters a, can lead the term (1 - Gqq,) to have right half 
plane zeros which are not canceled by corresponding zeros in 
q. In this case, the controller G, is unstable, and should gen- 
erally not be implemented as such. Usually, the foregoing 
problem can be overcome at the price of increasing the 
closed-loop time constant A. An alternative is to insert the 
offending zeros into the IMC controller q, thereby introduc- 
ing nonminimum phase behavior in the closed-loop set point 
response. 

In order to achieve a desirable set point response, espe- 
cially in the presence of modeling error, it is often desirable 
to select a filter time constant A, for the set point filter q, 
which is different from the controller filter time constant A. 
The form of the set point filter then becomes 

(20) 

Substituting Eq. 20 into 17 shows that the set point re- 
sponse of the two degree of freedom control system for a 
perfect model is the same as that of a single degree of free- 
dom control system with a filter time constant of A,. 

The software IMCTUNE, discussed previously, calculates 
the parameters of two degree of freedom PID controllers as 
well as the filter q, for rn = 1 or 2. The Program CC macro 
entitled 2DFPID performs the same calculations, but is lim- 
ited to rn = 1. This macro can be obtained as described for 
the macro PIDIMC. In both programs the only additional 
data needed is the lag in G, that is to be canceled by the 
zeros of (1 - Gqq,). 

Examples 
One degree of freedom controllers 

First-Order Plus Dead Time (FOPDT) Model. The most 
commonly used approximate model for chemical processes is 
the first-order plus dead time model given below 

Ke-HS 
G ( s )  = - 

rs + 1 
(21) 

Specifying a desired closed-loop response of the form C/R = 

e-”S/(As + 1) evaluating the PID parameters from Eqs. 7, 8 
and 9 gives 

o 2  
r l = r + -  71 

K ( A +  0 )  ’ 2(A+ 0 ) ’  
K ,  = 
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Figure 2. Comparison of the ISE generated by various 
tuning rules. 

Notice that as the desired loop time constant A gets large, 
the controller integral time constant T,, approaches the pro- 
cess model time constant T, and the controller gain K ,  and 
derivative time constant both approach zero. Thus the PID 
controller goes smoothly into a PI controller, and then a 
floating integral controller, as the desired speed of response 
decreases. 

Figure 2 compares the integral of the squared error for 
step set point changes using the tuning rule given by Eq. 22 
with those given by Rivera et  al. (1986) for varying process 
dead time to time constant ratios and A chosen as A/6 = 1/3. 
To obtain a fair comparison, the same value of A was used 

a, 
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0, 
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e a 
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(a) Closed-loop responses; 
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Figure 3. Relative errors of the PID controllers by vari- 
ous tuning rule to the ideal controller for G = 
e-3s/(iOs+l); A=1.5; A,djusted=3.48. 

for each tuning rule. It is not surprising that the IMC-PID 
method with no adjustment on the A value shows the largest 
ISE. This result is due to the fact that A in the IMC-PID 
tuning rule is not equivalent to the closed-loop time constant. 
To improve the IMC-PID response. we computed an ad- 
justed A, which gives the minimum ISE for the response 
specified by the particular closed-loop time constant by solv- 
ing the associated nonlinear optimization problem. The re- 
sult is denoted as IMC-PID (adjusted A) in Figure 2. As seen 
from the figure, the proposed tuning rule gives the smallest 
ISE among all tuning rules over the entire range of 0/7. The 
difference in the values of the ISE becomes more significant 
as the dead time effect dominates. The proposed tuning is 

-1 ~~ 0 t v - -  
0 5 10 1 5  20 

T i m e  

(b) controller outputs 

Figure 4. Responses to a unit step change in set point for G(s)= e -3?(10s + l ) ;  A = 1.5; Aadjusted = 3.48. 
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superior throughout. As an alternate comparison of the ap- 
proximation prccision of the PID controllers based on differ- 
ent tuning rules, the norms of the relative errors between the 
PID controllers and the ideal controller given by Eq. 3 vs. 
frequency are plotted in Figure 3. The process G = eP3’/(10s 
+ 1) was used in the simulation. As can be seen in the figure, 
the proposed tuning rule shows relatively small error for the 
low and middle frequency range. Note that in this example 
the cross-over frequency that is important in control is 0.61. 
In the high frequency range, the IMC-PID (with filter) 
method yields smaller relative error over the proposed meth- 
ods because of the filter. 

Figures 4a and b show the closed-loop response and con- 
troller output respectively for dead time to time constant ra- 
tios of 0.3. The values of the controller parameters used in 
Figure 4 are as follows 

IMC-PID with filter ( K ,  = 2.555, T, = 11.5, T~ = 1.304, 

T~ = 0.5) 

IMC-PID (adjusted)(K, = 2.309, 7/ = 11.5, T~ = 1.304) 

Proposed Controller ( K ,  = 2.444, 7, = 11, T~ = 0.909) 

Second-Order Plus Dead Time (SOPDT) Model. For a pro- 
cess of the form given by Eq. 23 below, and a desired closed- 
loop response of C/R = eCBS/(As + 112, evaluating Eqs. 7, 8, 
and 9 gives the PID parameters shown in Eq. 24 below (after 
some tedious algebra) 

For process models of the form KePoSA(T,s + 1xT2s + 111, 
simply replace 267 and 7’ in Eq. 24 with T~ + T? and r1r2, 
respectively. For comparison, the tuning rule of Smith et al. 
(1975) is also shown in Table 1. 

Figure 5 compares the closed-loop responses by several 
tuning methods for the process given by Eq. 24 with 7 = 10 
and 6 =l .  The resulting PID controller by the proposed 
method performs better than the controller tuned by the 
Smith method. Figure 6 compares the performance of various 
tuning rules using an approximate model. The process G = 

ePLo’/(10s + 1)’ is approximated by a model G = e l 5  5’/(15s 
+ l ) .  The superior performance of the proposed method is 
readily apparent from the figure. The tuning rules given by 
Eqs. 24a to 24c produce a closed-loop response of the form 
e ”/( As + 1)’ for a perfect model. However, it is also possi- 
ble to get a response that approximates ePss/(As + l), simply 
by choosing a first-order lag for the IMC controller q. The 
fact that such an IMC controller isn’t realizable doesn’t mat- 
ter since only the PID controller is desired. The tuning rules 
for the first-order lag plus dead time response are 

T .  8 2  

Table 1. Various Tuning Rules to Give the Desired Closed-Loop Response* 

Process Model Tuning Method Kc 7, 70 7 F  

1 2 7 + 0  8 
7 + -  

K 2 ( h +  8)  2 2 7 + 8  

Rivera et al. 27 + 8 0 78 
(with Filter) 7 + -  - 

2 K ( A +  8)  2 27 + e 

-~ Rivera et al. ~ 

71 8 2  8 2  

6 ( A + 8 )  [ 3 - $ ]  
Proposed T+- 

K ( A +  8 )  2 ( h +  8 )  

Kr ‘I 7 

T S  4 I K ( h +  0 )  
G=-- Smith 7 

Rivera et al. 27 + 8 8 
Improved IMC-PI - 7 + -  

2 K h  2 

Pro p o s e d 
71 82 

7 + -  
K ( h +  0 )  2(A+ 8 )  

Proposed 

71 + 7 2  

K ( A +  8) 
7, + 7 2  

7 1 7 2  

71 +‘2 

*Dealred iioccd-loop response: C/R = eCey/(As + 1) 1, r = 1 or 2 
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Figure 5. Closed-loop responses to a unit step change 
in set point: G(s)=e-30s/[(10s+l)(10s+l)l; 
A = 7 (proposed) A = 15 (Smith). 

Notice that Eqs. 24a to 24c are almost the same as Eq. 24d if 
h in Eq. 24d is taken as being twice that used in Eqs. 24a to 
24c. The resulting step set point responses are also almost 
the same. 

As stated previously, the derivative and/or integral time 
constants computed from Eqs. 7, 8 and 9 can be negative for 
some process models independent of the choice of filter time 
constant. This often occurs when the process model has one 
or more dominant lead time constants as for example the 
process given by 

s 2  + 2s  + 0.25 

sJ + 6 . 5 ~ ~  + 15s2 + 14s + 4 
p w  = (25a) 

0.0625(7.46s + 1)(0.536s + 1) 

(2s + 1)(0.5s + 1)' 
- - (2%) 

The open-loop response of the above process to a unit step 
change in control effort is given in Figure 7. Notice the very 
large overshoot of the final steady state caused by the strong 
lead action of the term (7.46s + 1) in the numerator of Eq. 
25b. Using Eqs. 7, 8, and 9 to compute PID parameters with 
a filter time constant of .2 yields a PID controller with T, = 

-4.60 and T~ = -7.87. On the other hand, using Eqs. 12, 8 
and 9 gives 

40(1.19s2 +2.86s +1) 
PID - lag = (26) 

s(7.47s + 1 )  

The response of the closed-loop control system using the 
above PID lag controller is given in Figure 8. Notice that the 
lag time constant in Eq. 26 is nearly the same as the large 
lead time constant in the process model. Indeed, very nearly 
the same controller would have been obtained by finding the 
PID controller for the process given by Eq. 26b. but with the 

I 
i 

0 

I ~~~ IMC-PID (with Filter) 
l IMC-PID (adjusted A 

I ITAE 
Ziegler & Nichols 

- Proposed 

0 50 100 150 200 
Time 

Figure 6. Closed-loop responses to a unit step change 
in set point: G = e - 'os/ ( lOs + 1); A = 6; 
'adjusted = 24* 

lead removed. However, to obtain this controller it is neees- 
sary to use a second-order filter with a time constant of 0.2 to 
make the controller proper. 

The PID controller with a second-order lag seems most 
useful when the process model has a strong second-order lead 
with complex zeros. For example, consider the process given 
by 

0.5(16s' +0.4s + 1 )  

(2s  + l I ( 0 . 5 ~  + 1)' 
p c s ,  = (27) 

Using a filter time constant of 0.5 yields an integral time con- 

0 16 
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0 1 0  
v) W 
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0 

C 
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0 04 
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Figure 7. Step response: G(s) = (s' +2s +O.25Y(s4 + 
6 . 5 ~ ~  + 15s' + 14 s +4). 
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Figure 8. Closed-loop response: G(s)= (s2 +2s  +0.25Y 
(s4 +6.5s3 + 15s' + 14s +4) with the PID * lag 
controller [40(1.19s2 +2.86s +l)y[s(7.47s + 
111. 

stant of 2.85 and a derivative time constant of - 4.98. The lag 
time constant computed from Eq. 12a is -2.75, and so the 
controller given by Eq. 12c also cannot be used. Finally, the 
controller given by Eq. 15 for a filter time constant of 0.5 is 

35 T 

30 

I 
25 

W 
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I 

05 
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0 

2(3.75s2 + 3 S s  + 1) 
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PID-lag = - (28) 
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I 
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I \ 

10 20 30 40 50 

-rime 
( a )  Disturbance rejection responses: 

Notice that the denominator lag of Eq. 28 is very close to the 
numerator lead in the process model given by Eq. 27. Here 
again, if one eliminates the numerator term (16s' +4s + 1) 
from the process model, computes the PID controller for the 
reduced model, and then adds back into the controller a lag 
to cancel the numerator term, the result is 

2(2.94s2 +3.25s + 1) 

~(16s '  +4s + 1 )  
PID lag = (29) 

The control system response using Eq. 29 is very similar to 
that using Eq. 28, and both yield excellent approximations to 
the desired closed-loop response of 1XO.Ss + 1l2. 

Two degree of freedom controllers 
For a process of the form given by Eq. 30 

below, specifying a desired closed-loop response of the form 
c/R = eCsxAs + 1) and q d  of the form qd(s)  = ( u s  + l) /(hs 
+ 1) gives the controller shown in Eq. 31 

FOPDT Model. 

(30) 

Evalua t ing  t h e  PID p a r a m e t e r s  f rom Eqs. 7, 8 
and 9 gives 

__- 
O i  I 

j 1, 

\ \  A 

I - - Single degree of freedom 
(IMC-PID with Filter) i 
Two degree of freedom 
(proposed) 

0 10 20 30 40 50 

Time 
(b) controller outputs. 

Figure 9. Comparison of single degree of freedom controller with A=0.75 and two degree of freedom controller 
with A =  A,=1.5 for G ( ~ ) = e - ~ s / ( l O s + l ) .  

AIChE Journal January 1998 Vol. 44, No. 1 113 



0.0 

-0.1 

a, 
S 

a 2 -0.2 
a 
In 

a, 

-0.3 

-0.4 

-0.5 I 1 I i 
0 10 20 30 40 50 

Time 

(a) Disturbance rejection; 

In I 
$ 1 1  1 Desired response 

I /  ’ Controller (Proposed) i ’ 2 I ~- Two degree of freedom 
a 

I--- 0 - ~~~- 

10 20 30 40 50 
i 
0 

Time 

(b) \et  point tracking 

Figure 10. Closed-loop responses by two degree of freedom controller with A = 2.5 and A, = 1.5 for the unstable 
process G(s) = e - ”/( - 10s + 1). 

A’ + a0 - 02/2 
2 A + O - a  

SOPDT Model. For a process of the form given by Eq. 35 
below, specifying a desired closed-loop response of the form 
C/R = ePBS/ (As  + 112 and qd of the form qd(s)  = ( azs’ + a,s 
+ l)/(As + 1)’ gives the controller shown in Eq. 36. 

rl = T + a - (3%) 

0 3 / 6 -  a02/2 

Here, we want to choose (Y so that the term [I - G(s)qq,(s)] 
has a zero at the pole of G,(s). That is, we want 

The solution of Eq. 34 gives the parameter a as a function of 
the filter and model time constants A and T .  Figure 9a com- 
pares the closed-loop disturbance rejections by single degree 
of freedom controller and two degree of freedom controller 
for the process given by Eq. 30 with K = I, T = 10, and 0 = 3. 
Figure 9b shows controller outputs for the responses in Fig- 
ure 9a. The two degree of freedom controller gives better 
performance than the single-degree of freedom controller. 

Figures 10a and 10b show the closed-loop disturbance and 
set point responses of a two-degree of freedom controller for 
the unstable process given by Eq. 30 with K = 1, T = - 10, 
and 0 = 3. Disturbances enter through the process [that is, 
GJs) = I/(- 10s + l)]. These parameters yield the following 
controller: K ,  = -4.018, T~ = 12.42, rD = 1.217 

q, = (6.25s’ +5s + 1)/(16.64s2 + 12.59s + 1) 

I G g l e  degree of freedom 
0 8  , 

controller (Smith) 
0 7  -1 

a I 

2 
a 0.2 0.3 1 

0.1 -4 
\ 
\ 

-0.1 +--- , I I d 
0 20 40 60 80 100 

Time 

Figure 11. Disturbance rejection responses by single 
degree of freedom controller with A = 10 and 
two degree of freedom controller with A =  A, 
= 5  for G(s)=e-‘os/(10s+l)2. 
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The 

The 
9. 

PID parameters can be evaluated from Eqs. 7, 8 and 

poles of G,(s) are 

Using the poles given by Eq. 37, the parameters (Y, are ob- 
tained by solving the following equations, given a value for 
the filter time constant A. A is most easily found by trial and 
error using the IMCTUNE software or the 2DFPID macro 
described previously 

Figure 1 1 compares the closed-loop disturbance response 
from a single degree of freedom controller tuned by Smith’s 
(1975) method with the above two-degree of freedom con- 
troller for the process e-’oS/(lOs + 1)’. The controller for this 
process with h = A, = 5 is given by K ,  = 1.84, r1 = 21.36, 7, 

= 6.45; q, = (5s + 1)2/(86.2~2 + 18.39s + 1). 

Conclusions 
We generaliLe the IMC-PID approach and show how to 

obtain PID parameters for general process models. The PID 
controller is obtained by taking the first three terms of the 
Maclaurin series expansion of the single-loop form of the IMC 
controller. In frequency and time domain, approximation of 
the ideal controller by the Maclaurin series approaches the 
ideal controller more accurately than that of existing meth- 
ods. The PID controllers tuned by the proposed method give 
better closed-loop responses than those tuned by other tun- 

ing methods. A new design method of two degree of freedom 
controllers was also proposed in this article. Such controllers 
also provided significantly improved dynamic per -  
formance over single degree of freedom controllers when the 
disturbances entered through the process. 
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Notation 
C =controlled variable 
F =error 

M =manipulated variable 
K =process gain 
R =set point 
5 =damping ratio, dimensionless 

T~ =derivative tuning parameter 
ISE =integral of the square error 

ITAE =integral of the time-weighted absolute error 
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