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PID Controller Tuning To Obtain Desired Closed Loop Responses

for Cascade Control Systems
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A new method for PID controller tuning based on process models for cascaded control systems
is proposed in this paper. The method consists of first finding the ideal controller that gives
the desired closed loop response and then finding the PID approximation of the ideal controller
by Maclaurin series. This method can be applied to any open loop stable processes. Furthermore,
it enables us to tune the PID controllers both for the inner loop and the outer loop simultaneously
while existing tuning methods tune the inner loop first and the outer loop next. Closed loop
responses of cascade control loops tuned by the proposed method are compared with those of
existing methods such as the frequency response method and the ITAE method. The results
show that the proposed tuning method is superior to the existing methods.

1. Introduction

Cascade control is one of the most successful methods
for enhancing single-loop control performance particu-
larly when the disturbances are associated with the
manipulated variable or when the final control element
exhibits nonlinear behavior. This important benefit has
led to the extensive use of cascade control in chemical
process industries. It is well-known that control per-
formance of the cascade control system largely depends
on tuning of both inner and outer loops. However,
information in the published literature on the tuning
methods of cascade control appears to be rather limited.
The frequency response methods (Jury, 1973; Hougen,
1979; Edgar et al., 1982) are usually employed to design
the controllers because the open loop transfer function
of the outer loop has higher order dynamics and/or time
delay. However, a major impediment to the use of the
frequency response methods in controller design has
been the trial and error graphical calculations, which
can be very tedious. Krishnaswamy (1990) provided
tuning charts that predict the primary controller set-
tings for minimizing ITAE criterion due to load distur-
bances on the secondary loop in cascade control systems.
But the method is of limited use for the PI/P configu-
ration and the first-order plus dead time (FOPDT)
model over a limited range of model parameters. In
addition, all of the foregoing approaches involve two
steps for tuning cascade control systems: first the
secondary controller is tuned on the basis of the dynamic
model of the inner process; then, the primary controller
is tuned on the basis of the dynamic model of the outer
process including the secondary loop. Therefore, if the
secondary controller is retuned for some reason, an
additional identification step is essential for retuning
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Figure 1. Block diagram of a cascade control system.

the primary controller, which is often cumbersome in
practice. In this paper, an efficient method of PID
controller tuning for cascade control systems is pro-
posed. The proposed method can be applied to any open
loop processes.

The contents of the paper are arranged as follows: A
new theoretical development of tuning rules for general
process models of cascade control systems by Maclaurin
series is given first, followed by an example to illustrate
the tuning procedure by the proposed method. Next the
guidelines for closed loop time constants based on
extensive simulation results are presented for perfor-
mance and robustness of the system. Then, several
simulation examples are provided to demonstrate the
method and to compare its performance with those of
other tuning methods. Finally, the last section deals
with the conclusions.

2. Theory

Development of Tuning Rules for General Pro-
cess Models. In cascade control systems, as shown in
Figure 1, closed loop transfer functions for inner and
outer loops are
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Here, the controllers G¢; and G, have to be designed
to satisfy set-point tracking (Ri) and disturbance
(L1, L) regulating requirements.

(a) Design of Secondary Controller. A secondary
controller has to be designed to reject the disturbances
into the inner loop (L) stably as well as quickly. For
this, the secondary variable should follow its set point
as quickly as possible, but with little overshoot and
oscillations. This requirement can be satisfied when the
secondary controller is designed such that set-point
tracking (C,/Ry) gives a stable overdamping response.
To tune the secondary controller to give such a set-point
tracking response, the method by Lee et al. (1996, 1997,
1998) is used:

Consider a stable process model of the inner loop.

Gpo(S) = P2m(S)P2a(S) )

where pam(s) contains the invertible portion of the model
and p2a(s) contains all the noninvertible portion. The
noninvertible portion is typically chosen to be the all
pass form as

—7s +1|[r%° — 2rgs + 1

e—TS

ij| s+ 1 rjzsz +25gs + 1

ri,rj>0; 0<Cj<
The requirement that p,a(0) =1 is necessary for the
controlled variable to track its set point because this
adds integral action to the controller.

Here, our purpose is to design the controller, G¢,, to
make the closed loop transfer function of the inner loop,
C,/R». follow a desired closed loop response given by eq
4,

G, P2A(S)
= 4
Ry (As+1)7 )

The term 1/(4,s + 1) is an IMC filter with an adjustable
time constant of the inner loop, 4,, and r2 is chosen to
ensure that the IMC controller (Rivera et al., 1986;
Morari et al., 1989) is proper. Then, the feedback
controller, Gcy, that gives the desired loop response is
given by

4z _ P2m71(S)
(1= Gpata) (4,5 + 1) — Pyu(s)

Geo(s) = ®)

where g is the IMC controller represented by P2y, ~1(s)/
(A2s + 1)r2.

Since p2a(0) is 1, the controller G¢;, can be expressed
with an integral term as

G, =1(s)/s (6)

In order to approximate the above ideal controller to a
PID controller, expanding Gez(s) in a Maclaurin series
in s gives

GeylS) = %(f(O) +F(0)s + @52 + ) 7)

It should be noted that the resulting controller has the
proportional term, the integral term, and the derivative
term, in addition to an infinite number of high-order
derivative terms. Since the controller given by eq 7 is
equivalent to the controller given by eq 5, the desired
closed loop response can be perfectly achieved if all
terms in eq 7 are implemented. In practice, however,
it is impossible to implement the controller given by eq
7 because of the infinite number of high-order derivative
terms. In fact, in the actual control situation low and
middle frequencies are much more important than high
frequencies, and only the first three terms in eq 7 are
often sufficient to achieve the desired closed loop
performance. The controller given by eq 7 can be
approximated to the PID controller by using only the
first three terms (1/s, 1, s) in eq 7 and truncating all
other high-order terms (s?, s2, ...). The first three terms
of the above expansion can be interpreted as the ideal
PID controller given by

Gey(s) = Kc(l + ;15 +rgs+ ) ®)
where
K. = F(0) (8a)
7, = F(0)/f(0) (8b)
75 = F'(0)/2F (0) (8¢)

The above eq 8 can be used to obtain the controller gain,
the integral and derivative time constants as analytical
functions of the process model parameters, and the
closed loop time constant, /..

The integral and derivative time constants (7, 7p)
from eq 8 can have negative values for some complicated
process models independent of the selection of filter time
constant. In this case, the simple PID controller
cascaded with a first-order lag of the form 1/(as + 1) or
a second-order lag of the form 1/(8.s? + fis + 1) is
recommended (Lee et al., 1996, 1997, 1998).

(b) Design of Primary Controller. The PID con-
troller tuned by the above procedure gives the closed
loop response sufficiently close to the desired response
(Leeetal., 1996, 1997, 1998). Thus, we can assume the
closed loop transfer function for the inner loop, C,/Rz,
can be approximately represented by eq 4 with sufficient
precision. Then, the term C,/R; in eq 2a is substituted
with eq 4.

P2a(S)
C, s+ ©
R, P,a(S)
1+ GClGP1—2
(A,s + 1)

Therefore, the process model of the outer loop is



considered as

Poals)

G,(8)=Gp;——
1(9) Pl(izs 1)

(10)

Now, consider a stable process model of the outer loop
of the form

G1(8) = P1m(S) P1a(S) (11)

where pim(s) contains the invertible portion of the
model, whereas pia(s) contains all the noninvertible
portion with the all pass form. Here, our purpose is also
to design the controller, G¢i, so that the closed loop
transfer function of the outer loop, C1/Rj, has the form
given by

C, P1a(S)
—_—=— 12
Ry (s+ )" (12)

Then, the controller transfer function of the outer loop
is represented by

-1 r2
a Pim "(S)(zs + 1)

G e =
LGl Py, (s) (s + 1) — PiA®s)

(13)

where @ is the IMC controller of the outer loop
represented by P, ~1(s)/(41s + 1)™. In the same manner
described in the earlier section, the ideal controller G¢;
can also be approximated to a PID controller form.

Example of Tuning Rule for FOPDT Model.
Since the most commonly used approximate model for
chemical processes is the first-order plus dead time
(FOPDT) model, a process with an FOPDT model both
for inner and outer loops is considered as an example.
Suppose a process of which models for inner and outer
loops are given by

—05s K —01s
Gon() = 2, Gpy(s) = - (14)
P2 ,s+1 T 7,s+1

Then, the model of the inner loop can be decomposed
as

_ _ K2 —0,s
GZ(S) - pZm(S) pZA(S) - TZS + 1e (15)

Specifying a desired closed loop response as

C, Paa g 08

R, (ls+1)2 4As+1

the ideal controller of the inner loop is given as

Pom H(S) 7,5+ 1

Os + 1) — Poa(s)  Ky(ls + 1 — e %)
(16)

Geo(s) =

Evaluating the PID parameters from eq 7 gives
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L
K. — 2020, 0,) 4 0,°
2T K G, 0) 2 a0, + 0y
0,° r 0,
= 3 - 17
o2 6(1, + 6,) 022 a7
+ -
720, + 0)
Further, the model of the outer loop is given by
P2a(s) K,e ™ e =
Gi(s) = Gplazs + 1) s+ 1ls+1 (18)
Thus, P1m(s) and P1a(s) are given as
Kl
G,(s) = s s) = g~ (Ort02s
1(8) = P1m(S) P1a(S) (0,5 + 1)(s + 1)
(19)

Similarly, specifying a desired closed loop response as
Ci  Pials) g (ntos
Ri (s+1)" @As+1)

the ideal controller of the outer loop is given as

Pin ()58 + 1)7

T Pa)((as + 1)~ Poas)
(r;s+1)(A,s + 1)

C1

(20)
K,e %545 + 1 — e (11029
Evaluating the PID parameters from eq 7 gives
K. — T
KA, + 0,4 6,)
0, + 0,)°
=1+ttt
T T o0, 1 6, + 6,)
. 0, + 6,)°
TR T 0, 6y (0, 0,
o1 = T 2(, + 6, + 6,)
(21)

The resulting tuning rule for FOPDT models is sum-
marized in Table 1. The results can be directly used
for any cascade control mode. For example, in order to
tune a P only controller, we use only the K term in
Table 1 just by excluding integral and derivative terms.

Although only the case of a FOPDT model is intro-
duced as an example, it should be noted that this
approach can be directly applied to any other complex
process models. Tuning rules for SOPDT models are
also listed in Table 1.

Guideline for Closed Loop Time Constants 4,
and A,. In the proposed approach, 1; and 1, are used
as main parameters for adjusting the speeds of closed
loop response. 41 and A, are chosen so as to provide good
performance and robustness. The disturbance rejection
of the inner loop mainly depends on the secondary
controller while the disturbance rejection and set-point
tracking of the outer loop depend on the primary
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Table 1. Resulting Tuning Rules for FOPDT and SOPDT Models

reference
process process model trajectory Ke 7 ™
FOPDT
(inner loop) B K,e % G, _ e 0 7 N 0,2 0, 3 0,
PP TS+ 1 Ry Zp8+1 Ky(dy +6,) 220, + 6) 60, +0,)° T
SOPDT
(inner loop) _ K,e Co_ ™ 7 2Er+ 0,2 2 0,°
P2 (2 + 2ers +1) Re A8+ 1 Kylly +6)) 202, + 6,) 6(L, + 0,) 0,
7 2(2, +0,)
FOPDT
(outer loop) _ K.e " Ci_ g s 7 e+ (6, + 6,)° (6, + 6,)°
PLTTs+ 1 Ry As+1 K +60,+60) 72750 30 10y "™ 60, +6,+6,) .
7
(01 + 6,)°
204, + 0,1+ 0,
SOPDT ~01s —(O1+62)s 2 3
(outer loop) _ K™ &: e 7 20t 42, + (0, +0,) 2+ 2080, — (6, + 6,)
PL 22 4 2&rs + 1 Ry As+1 K@ +0,+0,) 2 20, +6,+6,) 2 6(1, +6,+6,) N

T
(0, +6,)°
20, +06,+6,)

Table 2. Tuning Values by the Proposed Method and the Frequency Response Method for Example 1

inner loop controller

outer loop controller

frequency response method (P1/P mode)
proposed method (P1/P mode)
proposed method (PID/PID mode)

controller. As a result, 4; and 4, can be chosen inde-
pendently in most cases. The guidelines for 1; and 1
are studied especially for the case of the FOPDT model.
In practice, the closed loop band width is usually chosen
such that it does not exceed 10 times more than the open
loop band width (Morari et al., 1989). Therefore, as a
rough guideline, it is recommended that at least 1; and
A2 are 10 times less than those of corresponding open
loop time constants. The optimal value of 4 is a function
of process dead time 6. Specifying one value of /0 for
any FOPDT model results in an identical response when
time is scaled by 0, regardless of K, 6, and 7 (Morari et
al., 1989). Extensive simulation was done to find the
best ratios Ai/(61 + 62) and A,/0, in the sense of
robustness and performance. As a result, 1:/(01 + 0,)
= 0.5 and 1,/6; = 0.5 are recommended.

3. Simulation Study

To evaluate the proposed tuning rule, simulations for
typical cases were done. All the simulations were
performed using MATLAB (control system design and
simulation software, 1993).

Example 1. Firstly, the following process model
(Seborg et al., 1989) was studied.

-4 5 -1
Ge1 = (2s + 1)(4s + 1)’ Cra=531 CuTz o
G,=1 G,,=005 G,,=02 (22)

The PID controllers for inner and outer loops for the
above process were tuned by the proposed tuning rules.
The closed loop time constants for inner and outer loops
were chosen as 1; = 1 and 1, = 0.2. Two control modes
(PID/PID mode and PI/P mode) were tested for the

Kc2=4
Kc2=5
Ke2=5112=1,102=0

Kc]_ = 3.5, T = 5.3
KCl = 62, T = 62
Kc]_ = 6.2, Tl = 6.2, Tp1 = 1.484

25 1—
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Figure 2. Closed loop response due to load change (Ci/Ly) for
example 1.

proposed method. The results were compared with
those by the frequency method (Seborg et al., 1989). The
resulting PID parameters are listed in Table 2. Since
the PID controllers in cascade control should be tuned
considering all the closed loop performances both for set-
point tracking (Ci/R;) and disturbance rejection (C4/L;
and C4/L;), the tuning methods were tested in terms of
all these performances. Figures 2, 3, and 4 show the
closed loop responses tuned by the proposed method and
the frequency response method for the unit step change
in Ly, L1, and Ry, respectively. The results shown in
the figures illustrate the superior performance of the
proposed method.

Example 2. Since many chemical processes can be
represented by FOPDT models, the following process
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Table 3. Tuning Values by the Proposed Method and the ITAE Method for Example 2

inner loop controller

outer loop controller

ITAE method (P1/P mode)
proposed method (P1/P mode)

Ke2 = 2.978
Kcz = 3.444
Kcz = 3.444, T2 = 20.666, Tp2 — 0.6451

K(;1 = 7.3, TIL = 200
Kc]_ = 5.83, 71 — 105
KC]_ = 5.83, 711 — 105, Tp1 = 4.8

proposed method (PID/PID mode)

5

l/‘\ Frequency Response Method
i \ (PI/P mode)

P —— Proposed (PI/P mode)

|

I

P —— Proposed (PID/PID mode)

Process Response

-1 T T T T
0 10 20 30 40 50

Time
Figure 3. Closed loop response due to load change (Ci/L;) for
example 1.
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Figure 4. Closed loop response due to set point change (C1/R1)
for example 1.

(Krishnaswamy, 1990) was studied as the second ex-
ample.

—10s —2s
e _ 2e
Gpy = 100s + 1’ Gr, 20s + 1’
eflOS
GLl - 10s + l’ ’GLZ =1 (23)

The PID controllers were tuned by the proposed method
with 41 = 6 and A, = 1. The values of simulation results
were compared with those by the ITAE method (Krish-
naswamy, 1990). In Table 3, the PID tuning values
used in the simulation are presented. Figures 5, 6, and
7 show the closed loop responses tuned by the proposed
method and the ITAE method for the unit step changes
in Ly, L1, and Ry, respectively. The results shown in
the figures also illustrate the superior performance of
the proposed method. Another interesting point to note
is the inferior performance by the ITAE method even
in the case of load disturbance on the secondary loop.
This may be due to two possible reasons: the simple

.05

.04

I ITAE Method (PI/P mode)
Iy —— Proposed (PI/P mode)
—— Proposed (PID/PID mode)

.03 §

Process Response

-.01 T T T T
0 50 100 150 200 250
Time
Figure 5. Closed loop response due to load change (Ci/Ly) for
example 2.

) ITAE Method (PI/P mode)
| — — Proposed (PI/P mode)
—— Proposed (PID/PID mode)

Process Response
B
1

0.0 \

-2 T i T T
0 50 100 150 200 250
Time
Figure 6. Closed loop response due to load change (Ci/L;) for
example 2.

P1/P control mode used in the ITAE method (note that
the PID/PID control mode was used in simulation by
the proposed method) and local optima in ITAE opti-
mization, which is often the case in nonlinear optimiza-
tion problems. In many cases including flow loops, the
derivative mode is excluded in the secondary controller.
To evaluate the effect of the type of control mode, every
combination of control modes was considered. The
responses of various cascade control modes are pre-
sented in Figure 8 for the proposed method and the
ITAE method. The figure reveals that the superior
performance by the proposed method compared to the
ITAE method is not only due to the effect of the control
mode but also due to the local optimum problem in ITAE
optimization. As shown in the figure, the response by
the proposed tuning method shows still better perfor-
mance than that by the ITAE method. It is also shown
that the improvement of control performance is mainly
achieved by the properly tuned integral term in the
secondary controller and the derivative term in the
primary controller.
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Table 4. Tuning Values by the Proposed Method and the ITAE Method for Example 3

inner loop controller

outer loop controller

ITAE method (P1/P mode)
proposed method (PI/P mode)
proposed method (PID/P1D mode)

Kcz = 06625
Kcz = 0883

1.2 4
1.0 4
i3
123
oy
2 8
1]
D
[
o
3 6
§ ! {TAE Method (PI/P mode)
a — - Proposed (PI/P mode)
4 4 —— Proposed (PID/PID mode)
2
0.0 T T T T
0 50 100 150 200 250

Time

Figure 7. Closed loop response due to set point charge (C1/R1)
for example 2.
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049 ———- ITAE Method (PI/P mode)

Proposed (PI/P mode)

03 4 3 \ — —- Proposed (PI/PI mode)

(
\ —-— Proposed (PID/P| mode)
% —— Proposed (PID/PID mode)
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-.02 T T T T
o} 50 100 150 200 250
Time
Figure 8. Comparison of the closed loop responses due to load

change (Ci/Ly) in the PI/P, PI/PI, PID/PI, and PID/PID control
modes.

Example 3. To evaluate the robustness against
structural mismatch in the plant and the model, the
following complicated process was tested.

_10(—5s + 1)e™™ _ 3™
Pl @os+ 1)%10s + 12 0 133s+ 1
G e ™ G L o
Y 100s? +20s+1 W 100s+1

We added white noises to C, and C; to represent real
process measurements. The variances of the noises are
1E-4 and 1E-4 in measurements, respectively. We
identified the processes in the inner loop and the outer
loop with the FOPDT model. The models were obtained
by minimization of the squared error between process
output data and model output data. We obtained the

Kcz = 0.883, T2 =— 14.5, Tp2 = 1.117

Kc1 = 0.1373, 71 = 485.37
Kc1 = 0.09, 7j1 = 90.53
Kc]_ = 0.09, TIL — 90.53, Tp1 = 18.2

1.8

1.6 o
Proposed (PI/P mode)

1.4
1.2 -

1.0 ITAE Method

/ (PV/P mode)

Process Response
[o:]
|

4+
o Proposed (P!D/PID)
0.0 4 \ Morbpsh bl opng
-2 T T T T
0 500 1000 1500 2000 2500
Time

Figure 9. Closed loop response due to load change (Ci/Ly) for
example 3.
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ITAE Method
(PI/P mode)
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Figure 10. Closed loop response due to load change (C4/L;) for
example 3.

process models as follows:

10 2e*61.715

_ _ 2.988e%%
mi "~ 66.49s + 1°

G m27 13.28s + 1

(25)

The PID controllers were tuned by the proposed method
with 4; = 30.85 and 4, = 1.83. Note that the closed loop
time constants 4; and 1, were chosen by the guidelines
Al(01 + 65) = 0.5 and 1,/60, = 0.5. The values of
simulation results were also compared with those by the
ITAE method (Krishnaswamy, 1990). The PID tuning
values used in the simulation are presented in Table 4.
Figures 9, 10, and 11 show the closed loop responses
tuned by the proposed method and the ITAE method
for the unit step changes in L, L;, and Ry, respectively.



1.4
. / Proposed (P{D/PID mode)
10 |
3 |
5 i
a 8- !
w
o I
o !
] ! ITAE Method
g 6 i (PI/P mode)
s !
4 Proposed (PI/P mode)
2
0.0 T T T T
0 500 1000 1500 2000 2500

Time

Figure 11. Closed loop response due to set point change (C1/R1)
for example 3.

The superior performance of the proposed method is
readily apparent.

4. Conclusions

A new method for PID controller tuning for cascade
control systems was proposed. The tuning rule is based
on the process model and the desired closed loop
response. The ideal controller which can give the
desired closed loop response is found and the PID
approximation of the ideal controller is obtained by
taking the first three terms from Maclaurin series
expansion of the ideal controller. Extensive simulation
study illustrates that the proposed method gives better
performance compared with the existing methods. In
addition to this main benefit, the method has several
advantages: it is simple and easy to use because the
tuning parameters are in analytical form; the tuning of
inner and outer loop controllers can be done simulta-
neously, and no additional identification step is required
even when the secondary controller is retuned because
the proposed tuning method is based on the model
parameters of the process; the cascade control system
can be tuned to meet the specifications of both the inner
and outer loops because the proposed method has two
adjustable parameters.
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Notation

C = controlled variable
E = error

Ind. Eng. Chem. Res., Vol. 37, No. 5, 1998 1865

M = manipulated variable

K¢ = gain, proportional tuning parameter

K = process gain

Pm(s) = portion of a process model inverted by the control-
ler; it must be minimum phase

Pa(s) = portion of a process model not inverted by the
controller; it is usually a nonminimum phase (i.e.
contains dead times and/or right half plane zeros)

r = relative order of Py (s)
R = set point

Greek Letters

& = damping ratio, dimensionless

7, = reset time, integral tuning parameter
7p = derivative tuning parameter

A = time constant of reference trajectory
T = process model time constant

6 = dead time

Acronyms

IMC = internal model control

ISE = integral of the square error

ITAE = integral of the time-weighted absolute error
PID = proportional-integral-derivative

Literature Cited

Edgar, T. F.; Heeb, R. C.; Hougen, J. O. Computer-aided Process
Control System Design Using Interactive Graphics. Comput.
Chem. Eng, 1982, 5 (4), 225.

Hougen, J. O. Measurement and Control Applications; Instrument
Society of America: Pittsburgh, PA, 1979.

Jury, F. D. Fundamentals of Three-Mode Controllers; Fisher
Controls Company: Technical Monogragh No. 28; 1973.

Krishnaswamy, P. R.; Rangaiah, G. P. When to Use Cascaded
Control. Ind. Eng. Chem. Res. 1990, 29, 2163—2166.

Lee, Y.; Lee, M.; Park, S.; Brosilow, C. PID Controller Tuning For
Processes with Time Delay; ICASE: Korea, 1996; International
Session, Vol. I, p 291.

Lee, Y.; Lee, M.; Park, S. PID Controller Tuning to Obtain Desired
Closed-Loop Responses for Complicated Systems and Cascade
Systems. 2nd Asian Control Conference, Seoul, 1997; Vol. I, p
669.

Lee, Y.; Lee, M.; Park, S.; Brosilow, C. PID Controller Tuning for
Desired Closed-Loop Responses for SI/SO Systems. AIChE J.
1998, 44 (1), 106.

Morari, M.; Zafiriou, E. Robust Process Control; Prentice Hall: NJ,
1989.

Rivera, D. E.; Morari, M.; Skogestad, S. Internal Model Control,
4. PID Controller Design. Ind. Eng. Chem. Proc. Des. Dev. 1986,
25, 252.

Seborg, D. E.; Edgar, T. F.; Mellichamp, D. A. Process Dynamics
And Control; Wiley Series in Chemical Engineering: Wiley:
New York, 1989.

Shahian, B.; Hassul, M. Control System Design Using Matlab;
Prentice Hall: Englewood Cliffs, NJ, 1993.

Smith, C. A.; Corripio, A. B. Automatic Process Control; John Wiley
& Sons, Inc.: New York, 1985.

Received for review November 3, 1997
Revised manuscript received March 2, 1998
Accepted March 3, 1998

IE970769T



