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Abstract  

Sequential loop closing (SLC) method is one of the well-known methods to tune multiloop control systems for multivariable 
processes. In the method, each controller is designed sequentially with single-input single-output methods by finding the transfer 
function for the paired input and output while former loops have been closed. Utilizing the single-input single-output nature in 
tuning each controller, autotuning methods can also be applied. However, sometimes iterations are required for better 
performance. Especially, if pairing is undesirable, the multiloop control system designed with the autotuning SLC method does 
not show the best performance and tuning should be discarded and repeated totally for the correct pairing. Here, to avoid this, 
multivariable process models are identified while loops are being tuned. The identified models can be used to correct the pairing 
and to improve the multiloop control systems. Field experiments needed are just the same as the autotuning SLC method. © 2000 
Elsevier Science Ltd. All rights reserved. 
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1. I n t r o d u c t i o n  

Multiloop control systems are often used in the 
chemical industry because of their simplicity. Many 
methods have been available to tune the muttiloop 
control systems and still studied by many researchers. 
The sequential loop closing (SLC) method is one of the 
well-known methods to tune the multiloop control sys- 
tems systematically (Mayne, 1973; Chiu & Arkun, 1992; 
Hovd & Skogestad, 1994). The method designs multi- 
loop controllers sequentially. The first loop is designed 
for the first pair of  inputs and outputs and it is closed. 
The second loop is designed while the first loop has 
been closed. Since the first loop is closed, the transfer 
function of  the second pair is changed and hence design 
of  the second loop should be done with the changed 
transfer function. In this manner, all loops are de- 
signed. Each controller is designed based on the trans- 
fer function between the paired input and output while 
former loops have been closed. One potential disadvan- 
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tage is that the control performance is highly dependent 
on which loop is designed first and how it is designed. 
Specifically, the control performance of  the multiloop 
control system which is designed with the SLC method 
can be worse if pair of inputs and outputs is undesir- 
able or the design sequence is not appropriate. 

Faster loops with higher ultimate frequencies are 
usually tuned first. Since a faster loop is less affected 
from slower loops, faster loops can be treated as decou- 
pied loops and designed independently. On the other 
hand, when some loops are comparable speeds, the 
tuning sequence should be repeated for better control 
performance. To reduce effects of early loops on later 
loops, Chiu and Arkun (1992) used approximate trans- 
fer functions of later loops which have not been de- 
signed yet. Shen and Yu (1994) used a modified 
Ziegler-Nichols tuning rule for conservative tuning and 
repeated the design sequence once more. Shiu and 
Hwang (1998) decompose the multivariable system into 
several subsystems having comparable speeds. Tuning 
sequence is repeated within subsystems until iteration 
converges. 
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The concept of SLC method is to design the multi- 
loop control system in a sequence of single variable 
designs by identifying one transfer function between the 
paired input and output at each step. Hence we can use 
single-input single-output autotuning methods to design 
each loop (Shen & Yu, 1994; Semino & Scali, 1996; 
Loh, Hang, Quek & Vasnani, 1993). Autotuning SLC 
methods require minimal process information such as 
the input-output pairs and the design sequence. How- 
ever, if pairing of inputs and outputs is undesirable and 
design sequence is not appropriate, tuning results 
should be discarded and tuning sequence should be 
repeated wholly for the correct pair and sequence, 
yielding long field tests. For some processes, undesir- 
able pairing can be detected during the sequence of 
loop closing by checking the sign change at the steady 
state (Shen & Yu, 1994). However, the best pairing 
cannot be found during the sequence of loop closing in 
general. Here, to avoid these problems of autotuning 
SLC methods, we identify the whole multivariable pro- 
cess model instead of finding one transfer function at 
each step. Without any additional experimental load, 
the whole multivariable process model can be obtained 
while loops are tuned. The model can be used to correct 
the pairing, determine the loop closing sequence and 
tune multiloop control systems. 

2. Sequential loop dosing method 

Consider a n × n multivariable process whose trans- 
fer function matrix is 

G(s)={gu(s), i = l ,  2 . . . . .  n, j = l ,  2 . . . . .  n} 
(1) 

The first m - 1 loops are assumed closed already with 
a multiloop controller (Fig. 1) 

Cl(s) = diag{ci(s), i =  1, 2 . . . .  ( m -  1)} (2) 

Then the transfer function between the mth pair 
becomes 

qm~(S) = gram(S) -- P2(s)C,(s)(I + PI(S)CI(S)) -1P3(s ) 
(3) 

where, 

Pl(S) = 
I gll(S) "'" g,,m- 1(S) 

Lgm -- 1,1(s) "'" g,n-- l,m-- I(S) 

Pz(s) = [gml(S) "'" gm,m -- I(S)], 

P3(s)= [ gl'm'. (S) ] 

Lgm-l,m(s) J 

The mth loop is designed for the transfer function 
(Eq. (3)). The transfer function qmm (S) usually cannot 
be approximated well with the first order plus time 
delay model. Hence, to tune the mth loop, the fre- 
quency response methods such as the Ziegler-Nichols 
method and the gain and phase margins method are 
often used. Shen and Yu (1994) used the modified 
Ziegler-Nichols rule; 

Ku ~ m  
3 

T1 = 2Pu (4) 

for the multiloop PI control system. Here K¢ is the 
controller gain, q is the integral time, and Ku and Pu 
are the ultimate gain and ultimate period of qmm(S), 
respectively. The modification is to detune the con- 
troller for conservative responses. 

Applying this procedure sequentially from the first 
controller to the last controller, we can design multi- 
loop control systems. 

3. Sequential loop closing identification 

r - U y , .  (s) 

(s) 

~ g , , ( s )  

u: g ~ 2 ( s  ) [  ,$y~.  

Fig. 1. A partial control system for the SLC identification. 

In the SLC method, the transfer function of qmm(S) 
under the former loops closed is identified at each step 
using single variable identifications. Instead, we identify 
the whole transfer function matrix while multiloop 
control system is tuned sequentially. 

3.1. 2 × 2 Process identification 

Consider a 2 x 2 open-loop stable process; 

G(S) = F gl l (s)  glz(s)] (5) 
kg2,(s) g2~(s)_l 
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3.1.1. S tep  1 
We identify gl l ( s )  and g21(s) by perturbing the input 

u~. Any single variable identification method can be 
used. Here, the Laguerre filter method (Zervos et al., 
1988; Park et al., 1997) is used. The method fits outputs 
with a truncated Laguerre series; 

M 

y(t) =Yss + ~ aiEi(t) 
i = l  

e - P t  d i -  l ( t i -  l e - Z P t  ) 
~i(t)  (6) x/zP (i--  1)! -d~-- i 

where, ^ means an estimate, p is a time scale factor and 
a~s are fitting parameters. Since the Laguerre coefficient 
ais appear linearly in Eq. (6), it can be identified by the 
standard least squares method with a fitting criterion, 
j =  N Era= l ( y ( t m ) - ) ~ ( t m ) ) 2 , w h e r e ,  t,, is time at the ruth 
measurement. The identified model is 

M 
~,(s) = ys--2 + ~ a iL i ( s  ) 

S i=1  

(s 
L, ( s )  = v / ~  (s + p y  (7) 

After identifying the Laguerre model with sufficiently 
larger M (here, M- -  16 is used), we apply the model 
reduction method based on the balanced realization to 
it. By adjusting the time scale factor p a little we find a 
reduced model with minimal order. 

Since the above Laguerre model is usually high or- 
der, sometimes it is inconvenient. However, the fre- 
quency response can be easily obtained. So we extract 
convenient low order parametric model from the fre- 
quency response. We use first order plus time delay 
(FOPTD) model which have many tuning rules for PID 
controllers; 

ke  - Os 
f ( s )  = (8) 

z s+  1 

whose parameters are 

k = g(O) 

r = a v g ( # ( k / l g ( j e ) l ) 2 - 1 )  

0 = a v g ( - / g ( J ° ) ) ~  tan-~(z°)))  (9) 

where, avg(.) means the average for a given frequency 
range. 

3.1.2. S tep  2 
Tune the first controller c~(s) for the transfer func- 

tion ~ll(S), the estimate of gla(S), and close the first 
loop. Then perturbation is introduced in the second 
input u2. Transfer functions for the input u2(s) are 

Cl(S)gl2(S) 
UI(S) = ql2(S)U2(S) -- 1 q-gll(S)Cl(S) U2(S) 

g21(S)CI (S )g l2 (S ) ,  ~ , , 
y2(S) = q=(S)U2(S) = g=(s)  -- -1 + gll(S)Cl(S----------~ ) u2(S) 

(10) 

By applying the above identification method to the 
output Y2 and the input Ul, we can obtain models for 
ql2(S) and q22(S). Then, we have 

- -  ~12(S)(1 q- gll(S)Cl(S)) 
gI2(S)  = 

C I ( S )  

g21(S)Cl(S)gI2(S) 
g22(S) = q22(S) -{- (1 1) 

1 + gll(S)Cl(S) 

From the identified Laguerre models of R12(s) and 
~22(s), we can obtain their frequency response data and, 
by fitting them, we can get approximate find first order 
plus time delay models. 

3.2. n × n Process  identi f ication 

First, by perturbing the first input ~/1, we can obtain 
ga(s) ,  i - - 1 ,  2 . . . . .  n as usual. From ~ll(S), the first 
controller q ( s )  is designed. When the first loop has 
been closed, we have 

Cl(S)gl2(S) 
u, (s )  = ql2(s)u2(s) = - uz(s) 

1 -+- Cl(S)glI(S ) 

Cl(s)gil(S)gI2(S), ~ , , 
y i (s)  = qi2(S)U2(S) = g/2(S) - -  i" -~  C,(s)g 1 ,(S-"---"--~ ) u2ts)' 

i =  2, 3 . . . .  , n (12) 

Hence, by perturbing the second input u2 under the 
first loop closed, we can obtain qa(s), i = 1, 2 . . . . .  n and 
we have 

1 ~- CI(S)gll(S ) 
g l2 (S)  = - -  (112(S) 

el(s)  

~a(s) = Oa(s) - ~il(s)~12(s), i = 2, 3 . . . . .  n (13) 

In general, assume that m - 1  loops have been 
closed. Transfer functions for the mth input are 

Ul(S)  

U m _ l (S)  

- Q3(s)Um(S) 

Ym5 S) 

= - C , ( s ) ( I +  Ps ( s )C l ( s ) )  1p7(S)Um(S ) 

=-- Q4(S)Um(S) = ( P 8 ( s )  -~- P6(s)Q3(s))um(s)  

(14) 

where, 
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Ps(s) = 
I g11(s) 

gm- 1,1(S) 

"'" g l ,m-  1(S) ] 

"'" g m _ l , m _ l ( S )  

P6(s) = 

gn.l(S) 

"'" gm,m -- 1(8) 

"'" gn,m - 1(S) 

gl,m(S) 

e7(s) = 
g m -  1,m(S) 

Hence we have 

, Ps(s)  = LgmT(S) g°,m(S) 

P7(s) = 
gl,m(S) 

grn --  l , m ( S )  

= -- (C 1 I(S) -[- ff5(S))03(S) 

Igm,m(S) 

/~8(S) = [ gn,i(S)  = 04(S)-/~6(S)03(S) (15) 

In this manner, full multivariable process transfer 
functions can be determined while multiloop control 
system is being designed. 

To identify Q3(s) and Q4(s), we use the Laguerre 
filter method as above. With Eq. (15), we calculate 
~im(JO)), i =  1, 2 . . . . .  n, from Q3(jco) and 04(j(.o). 
Their computations in frequency domain are easy. 
From ~12(s), we extract the approximate first order plus 
time delay models for ~12(s). 

The performance of multiloop control system de- 
signed with SLC methods is strongly dependent on 
which loop is designed first and how it is designed. To 
reduce this problem, Shen and Yu (1994) suggested 
some iterations. After all loops have been designed, the 
first loop is redesigned while all other loops have been 
closed. In this manner, loops up to n -  1 loop are 
redesigned once more. If multivariable process models 
are available, this iteration can be done in the com- 
puter. It will reduce the design time and cost due to 
long field experiments considerably. 

Loop failure tolerance is easily obtainable with the 
multiloop control systems. However, the SLC method 
does not guarantee it. Since some loops can be in 
manual mode for some reasons such as changing the 
control configuration and changing operation condi- 
tions, the loop failure tolerance is a very important 
feature in the industry. If a multivariable model is 
available, the loop failure tolerance can be checked 
although not exact because the identified model has 
uncertainties. 

Identified models can be used to design control sys- 
tems other than the multiloop control systems. Even a 
partial decoupling control system is used; a consider- 
able improvement in control performance can be ob- 
tained for some interacting multivariable processes. 

5. Case studies 

Simulations are carried out to show that the pro- 
posed identification method provide models for multi- 
variable processes and can be used to improve the 
autotuning SLC method. 

4. Usage  of  the identified model 

Instead of identifying one transfer function at each 
step in autotuning SLC method (Shen & Yu, 1994; Loh 
et al., 1993), we identify full transfer function matrix. 
The multivariable process model can be used to im- 
prove the autotuning SLC method without iteratively 
applying the method to the real process, which requires 
long field experiments. 

When the pairing is inadequate, good control perfor- 
mance cannot be expected for any multiloop control 
system including what is designed with the autotuning 
SLC method. For some multiloop control systems with 
pairing of negative relative gain array, the control 
system does not have loop failure tolerance so that the 
control system can be unstable when some loops are 
open or manipulated variables are on their limits. Be- 
sides the integrity problem, the control performances 
are usually very poor. The multivariable model iden- 
tified while loops are being designed can be used to 
check and correct the pairing. 

Example 1. Consider the Wood and Berry (1984) 
column: 

GwB(S) = 

12.8 exp(-- s) 
16.7s + 1 

6.6 exp( - 7s) 
10-  ¥i 

18.9 exp( -- 3s) 1 
21s + 1 [ 

19.4 exp( -- 3s) [ 

14.4s + 1 J 

First, with the usual step change of the first input, we 
identify ~ll(S) and ~21(s). Here, the outputs are cor- 
rupted with random noises between 0.1 and -0 .1 .  
From gll (s), we design the first controller by the 
Ziegler-Nichols tuning rule as Cl(S)= 1.17(1 + 1/2.64s) 
and close the first control loop. Under the first loop 
closed, responses for the unit step change in u2 are 
shown in Fig. 2. 

They are fitted with the truncated Laguerre series. 
From the Laguerre series models, we obtain first order 
plus time delay models of ~12(s) and ~22(s). The whole 
transfer functions obtained are 
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w " 12.8 e x p ( -  1.21s) - 18.9 e x p ( -  2.85s) 

15.6s + 1 18.2s + 1 
(~wB(S) = 6.60 exp( - 6.55s) - 19.4 exp( - 2.40s) 

10.9s + 1 13.5s + 1 

With this model, control systems can be designed. 
Fig. 3 shows typical responses of multiloop control 
systems tuned by the modified Ziegler-Nichols method 
(Shen & Yu, 1994). Multiloop control systems designed 
with the exact process and the identified model have 
similar responses. If  more elaborate tuning rules are 

e ~h l  used instead of the modified Ziegler-Nichols method, 
better control performances may be obtained. A partial 
decoupling control system with Fig. 2. Typical responses of u 1 and Y2 and their Laguerre polynomial 

fittings for the step change of u 2 while the first loop is closed in 
Example 1. -0.4525s + 0.0425 

C ( s )  = s 

0 
0.0833s + 0.0033 

s 

[ 61j195 
can be designed. Its response is also shown in Fig. 3. 
Even though a static decoupler is used, far better 
response is obtained. 

Example 2. Consider again the Wood and Berry 
column; 

18.9 exp( - 3s) 

Fig. 3. Control responses for the step set point change in Example 1. 
(Solid line, multiloop control system tuned with the exact process; 
dotted line, multiloop control system tuned with an identified model; 
dashed line, partial decoupling control system). 

G ~ ( s )  = 

12.8 exp( - s) ] 
21s+ 1 16.7s+ 1 | 

19.4 e x p ( -  3s) 6.6 e x p ( - 7 s ) |  

14.4s+ 1 10.9s+ 1 _] 

-..... 

I 

Fig. 4. Control responses for the step set point change in Example 2. 
(Solid line, multiloop control system tuned by the autotuning SLC 
method without pairing correction; dotted line, multiloop control 
system tuned with an identified model and pairing correction). 

Here, the pairing is changed. Since the diagonal 
elements of the relative gain array of the steady-state 
gain matrix is negative (211 = --  1.01), this pairing suf- 
fers from lack of integrity when a multiloop control 
system with integral action is used. Applying the pro- 
posed identification method, we can obtain a model; 

~2(s )  = 

18.9 e x p ( -  2.79s) 12.8 e x p ( -  1.10s) 

21.0s + 1 16.0s + 1 
19.4 exp( - 3.03s) 6.58 exp( - 4.92s) 

14.3s + 1 9.56s + 1 

In the SLC identification, c l ( s ) = - 0 . 2 9 3 ( 1 + 1 /  
8.59s) is used. From this model, we can correct the 
pairing and tune control systems. Multiloop control 
system with correct pairing is tuned by applying the 
SLC method. Responses for multiloop control system 
designed with the identified model are compared with 
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those designed with the autotuning SLC method of Shen 
and Yu (1994) in Fig. 4. 

We can see that the autotuning SLC method shows 
very poor control performances. It is mainly because the 
pairing in the multiloop control system of the autotuning 
SLC method is undesirable. Actually it does not have 
loop failure tolerance, either. The autotuning SLC 
method should be repeated for the corrected pairing. 

6. Conclusion 

It is suggested to identify the full multivariable model 
while multiloop control system is tuned with the SLC 
method. The model can be used to correct the pairing, 
determine design sequence and design model based 
control systems. Field tests needed are the same as those 
for the autotuning SLC method. Simulations show that 
the proposed method, which tune the control system and 
identify the full multivariable model at the same time, is 
very useful to obtain better multiloop control systems. 
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