
Analytical Design of Multiloop PID Controllers for
Desired Closed-Loop Responses

Moonyong Lee and Kihong Lee
School of Chemical Engineering and Technology, Yeungnam University, Kyongsan 712-749, Korea

Changgeun Kim and Jietae Lee
Dept. of Chemical Engineering, Kyungpook National University, Taegu 702-701, Korea

DOI 10.1002/aic.10166
Published online in Wiley InterScience (www.interscience.wiley.com).

Keywords: multiloop PID controller, PID controller tuning, generalized IMC-PID method, Maclaurin series expansion,
analytical design

Most chemical processes are basically multiple input/
multiple output (MIMO) systems. Despite considerable
work on advanced multivariable controllers for MIMO sys-
tems, multiloop proportional-integral-derivative (PID) con-
trollers remain the standard for many industries because of
their adequate performance with most simple, failure toler-
ant, and easy to understand structure. In a multiloop system,
once a control structure is fixed, control performance is then
determined mainly by tuning each multiple single-loop PID
controller. However, because the interactions that exist be-
tween the control loops make the proper tuning of the
multiloop PID controllers quite difficult, only a relatively
few tuning methods are available to the multiloop PID
controllers and most of them require nonanalytical forms
with complex iterative steps (Loh et al., 1993; Luyben,
1986; Skogestad and Morari, 1989). The analytical tuning
rule is very attractive, with respect to its practicality, but the
mathematical complexity attributed to the loop interactions
has mainly prevented the analytical approach to the mul-
tiloop systems.

In this article, we propose an analytical design method for
the multiloop PID controllers to give desired closed-loop
responses by extending the generalized IMC–PID method
for single input/single output (SISO) systems (Lee et al.,
1998) to MIMO systems. Simple but efficient tuning rules
are obtained for general process models by using the fre-
quency-dependent property of the closed-loop interactions.

Theory
Direct extension of generalized IMC-PID method to
multiloop systems and its limitation

In the multiloop feedback system, shown in Figure 1, the
closed-loop transfer function matrix H(s) is given by

y�s� � H�s�r�s� � �I � G�s�K̃�s���1G�s�K̃�s�r�s� (1)

where G(s) is the open-loop stable process, K̃(s) is the mul-
tiloop controller, and y(s) and r(s) are the controlled variable
vector and the set-point vector, respectively.

According to the design strategy of the multiloop IMC
controller (Economou and Morari, 1986), the desired closed-
loop response Ri of the ith loop is typically chosen by

yi

ri
� Ri �

Gii��s�

��is � 1�ni
(2)

where Gii� is the nonminimum part of Gii and is chosen to
be the all-pass form, �i is an adjustable constant for system
performance and stability, and ni is chosen such that the
IMC controller would be realizable. The requirement of
Gii�(0) � 1 is necessary for the controlled variable to track
its set point.

Let the desired closed-loop response matrix R̃(s) be

R̃�s� � diag�R1, R2, . . . , Rn� (3)
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Then, our aim is to design the multiloop controller K̃(s) such
that all the diagonal elements of H(s) resemble those of R̃(s) as
close as possible over a frequency range relevant to control
applications.

K̃(s), with an integral term, can be written in a Maclaurin
series as

K̃�s� �
1

s
�K̃0 � K̃1s � K̃2s

2 � O�s3�� (4)

Note that K̃0, K̃1, and K̃2 correspond to the integral, propor-
tional, and derivative terms of the multiloop PID controller,
respectively.

Expanding G(s) in a Maclaurin series also gives

G�s� � G0 � G1s � G2s
2 � O�s3� (5)

where G0 � G(0), G1 � G�(0), and G2 � G	(0)/2.
By substituting Eqs. 4 and 5 into Eq. 1 and rearranging it, we

obtain H(s) in a Maclaurin series as

H�s� � I � �G0K̃0�
�1s � �G0K̃0�

�1�I � G0K̃1 � G1K̃0�

(G0K̃0)
�1s2 � �G0K̃0�

�1�G0K̃2 � G1K̃1 � G2K̃0

� �I � G0K̃1 � G1K̃0��G0K̃0�
�1

�I � G0K̃1 � G1K̃0��G0K̃0�
�1�s3 � O�s4� (6)

R̃(s) can also be expressed in a Maclaurin series as

R̃�s� � R̃�0� � R̃��0�s �
R̃	�0�

2
s2 �

R̃
�0�

6
s3 � O�s4� (7)

where R̃(0) � I, given that Gii�(0) � 1.
By comparing each diagonal element of H(s) and R̃(s) in

Eqs. 6 and 7 for the first three s terms (s, s2, s3), we can express
K̃0, K̃1, and K̃2 in terms of the process model parameters and
the desired closed-loop response parameters. Although the
analytical tuning rules so obtained take the interaction effect of
the multiloop system fully into account, some of them (that is,
for K̃1 and K̃2) would be too complicated to use it practically
and also often show severe inaccuracy because of the inherent
limitation of a Maclaurin series for the high-frequency region.
However, by using the frequency-dependent characteristics of
the closed-loop interactions, these limitations can be success-
fully avoided and the simple but efficient tuning rules are
available.

Design of proportional gain Kc and derivative time
constant �D

As indicated from Eq. 4, the impact of K̃1 and K̃2 on the PID
algorithm becomes more predominant at high frequencies,

Figure 1. Block diagram for multiloop control system.

Figure 2. Bode diagrams for the ideal controllers and the proposed PI controllers for Wood and Berry column.
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whereas it is relatively insignificant at low frequencies. There-
fore it is desirable for K̃1 and K̃2 to be designed based on the
process characteristics at high frequencies.

Given that �G( jw)K̃( jw)� �� 1 at high frequencies, H(s) can
be approximated to

H�s� � �I � G�s�K̃�s���1G�s�K̃�s� � G�s�K̃�s� (8)

This feature at high frequencies indicates that K̃1 and K̃2 can
be designed by considering only the main diagonal elements
in G(s). In fact, at high frequencies, the transmission inter-
action (that is, a change in a loop affects its controlled
variable again through the other loops) is mostly eliminated
by low-pass filtering through the processes in the other
loops. Therefore, the generalized IMC-PID method for the
SISO system (Lee et al., 1998) can be directly applied to the
design of Kci and �Di of the multiloop PID controller as
follows.

Dropping the off-diagonal terms in G(s), we can obtain the

ideal multiloop controller K̃(s) to give the desired closed-loop
responses R̃(s) as

K̃�s� � G̃�1�s�R̃�s��I � R̃�s���1 (9)

where G̃(s) � diag[G11, G22, . . . , Gnn].
Thus, we can design the ideal controller Ki(s) of the ith loop

simply as

Ki�s� �
Qi�s�

1 � Gii�s�Qi�s�
�

�Gii��s���1

��is � 1�ni � Gii��s�
(10)

where Qi(s) is the IMC controller given by [Gii�(s)]�1/
(�iS � 1)ni.

Because Gii�(0) is 1, Eq. 10 can be rewritten in a Maclaurin
series with an integral term as

Figure 3. Closed-loop responses to sequential step changes in set point for Wood and Berry column.

Table 1. Tuning Results by the Various Methods in the Examples

Process Tuning Method

Controller Parameter

Kci �Ii �Di

WB column Proposed PID* 0.219, �0.0964 8.35, 7.45 0.0817, 0.525
Proposed PI* 0.219, �0.0964 8.35, 7.45 —
BLT 0.375, �0.0750 8.29, 23.6 —
SAT 0.868, �0.0868 3.25, 10.4 —

OR column Proposed PI** 0.593, �0.124, 3.22 3.43, 2.88, 7.65 —
BLT 1.510, �0.295, 2.63 16.4, 18.0, 6.61 —
SAT 2.710, �0.366, 4.56 7.44, 10.52, 3.09 —

Note: ni � 1 is used in all cases.
* �i � 5, 5.
**�i � 15, 15, 3.
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Ki�s� �
1

s � fi�0� � f�i�0�s �
f 	i�0�

2
s2 � O�s3�� (11)

where fi(s) � Ki(s)s.
By truncating the higher-order s terms, except the first three

terms, the resulting ideal controller can be interpreted as the
standard PID controller. Finally Kci and �Di of the multiloop
PID controller can be obtained by

Kci � f�i�0�; �Di � f 	i�0�/ 2Kci (12)

Design of integral time constant �I

Because the integral term K̃0 in the PID control algorithm is
dominating at low frequencies, it needs to be designed based on
the interaction characteristics at low frequencies. It is clear
from Eq. 1 that the loop interactions cannot be neglected at low
frequencies. Therefore, K̃0 should be designed by taking the
off-diagonal terms of G(s) into account. Comparing each di-
agonal element of the first-order s terms in Eqs. 6 and 7 gives
an analytical tuning rule for �Ii as

�Ii � �
�G�ii��0� � ni�i�Kci

�G�1�0��ii
(13)

Simulation Study

Example 1

The distillation column of Wood and Berry (1973) was
studied.

G�s� � �
12.8 exp��s�

16.7s � 1

�18.9 exp��3s�

21s � 1
6.6 exp��7s�

10.9s � 1

� 19.4 exp��3s�

14.4s � 1
�

To evaluate how closely the proposed multiloop control-
ler approximates the ideal multiloop controller, the Bode
diagrams were drawn for the proposed PI controller and the
ideal controller. The result is given in Figure 2. As can be
seen in the figure, the proposed PI controller is closely
approximated to the ideal controller over the whole fre-
quency range, which illustrates the validity of our approach
to use the frequency-dependent interaction characteristics.
This close approximation essentially leads to satisfactory
control performance. Figure 3 shows the closed-loop re-
sponses by several tuning methods. Control performances of
the proposed PI and PID controllers were compared with
those by the BLT method (Luyben, 1986) and the SAT

Figure 4. Closed-loop responses to sequential step changes in set point for Ogunnaike and Ray column.
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method (Loh et al., 1993). To evaluate both set-point track-
ing and disturbance rejection performances, unit step
changes in set point were sequentially made in the individ-
ual loops. ni was chosen as 1 for all the loops according to
the process model order. All the controller parameters used
in the example are listed in Table 1. The proposed control-
lers show satisfactory performances. Note that both the

proposed PI and PID controllers give almost identical per-
formances because, in this example, the close approximation
is already established with the PI action only.

Example 2
The 3 � 3 MIMO system (Ougnnaike et al., 1983) was

considered.

G�s� � �
0.66 exp��2.6s�

6.7s � 1

�0.61 exp��3.5s�

8.64s � 1

�0.0049 exp��s�

9.06s � 1
1.11 exp��6.5s�

3.25s � 1

�2.36 exp��3s�

5s � 1

�0.012 exp��1.2s�

7.09s � 1
�33.68 exp��9.2s�

8.15s � 1

46.2 exp��9.4s�

10.9s � 1

0.87�11.61s � 1� exp��s�

�3.89s � 1��18.8s � 1�

�
Figure 4 compares the closed-loop response of the proposed

multiloop PI controller with those by the BLT method and the
SAT method. Sequential step changes of magnitude 1, 1, and
10 in set point were made to the 1st, 2nd, and 3rd loops,
respectively. The controller parameters used in the simulation
are also listed in Table 1. The superior performance of the
proposed method is readily apparent.

Conclusions

An analytical method for multiloop PID controller design
is proposed by extending the generalized IMC-PID tuning
method for SISO systems. Simple but efficient tuning rules
can be obtained by using the frequency-dependent properties
of the closed-loop interactions: the proportional and deriv-
ative terms are designed simply by neglecting the off-
diagonal elements, whereas the integral term is designed by
taking the off-diagonal elements fully into account. The
resulting multiloop PID controller closely approximates the
ideal multiloop controller over the whole frequency range
and, in turn, gives satisfactory control performance.
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