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An analytical tuning method for a PID controller cascaded with a lead/lag filter is proposed for FOPDT
processes based on the IMC design principle. The controller is designed for the rejection of disturbances
and a two-degree-of-freedom control structure is used to slacken the overshoot in the set-point response.
The simulation study shows that the proposed design method provides better disturbance rejection than
the conventional PID design methods when the controllers are tuned to have the same degrees of robust-
ness. A guideline of a single tuning parameter of closed-loop time constant (λλλλλ) is provided for several
different robustness levels.

Introduction

Proportional integral derivative (PID) controllers
have been the most popular and widely used control-
lers in the process industries because of their simplic-
ity, robustness and wide ranges of applicability with
near-optimal performance. However, it has been no-
ticed that many PID controllers are often poorly tuned
and a certain amount of effort has been made to sys-
tematically resolve this problem.

The effectiveness of the internal model control
(IMC) design principle has made it attractive in the
process industries, where many attempts have been
made to exploit the IMC principle to design PID con-
trollers for both stable and unstable processes (Morari
and Zafiriou, 1989). The IMC-PID tuning rules have
the advantage of using only a single tuning parameter
to achieve a clear trade-off between the closed-loop
performance and robustness. The PID tuning methods
proposed by Rivera et al. (1986), Morari and Zafiriou
(1989), Horn et al. (1996), and Lee et al. (1998) are
typical examples of the IMC-PID tuning method. The
direct synthesis (DS) method proposed by Smith et al.
(1975) and the direct synthesis for the disturbance (DS-
d) method proposed by Chen and Seborg (2002) can
also be categorized into the same class as the IMC-
PID methods, in that they obtain the PID controller
parameters by computing the ideal feedback control-
ler which gives a predefined desired closed-loop re-
sponse. Although the ideal controller is often more
complicated than the PID controller for time delayed
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processes, the controller form can be reduced to that
of either a PID controller or a PID controller cascaded
with a low order filter by performing appropriate ap-
proximations of the dead time in the process model.

The control performance can be significantly en-
hanced by cascading the PID controller with a lead/
lag filter, as given by Eq. (1).
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where Kc, τI and τD are the proportional gain, integral
time constant, and derivative time constant of the PID
controller, respectively, and a and b are the filter pa-
rameters.

The structure of the PID controller cascaded with
a filter was also suggested by Rivera et al. (1986),
Morari and Zafiriou (1989), Horn et al. (1996), Lee et
al. (1998) and Dwyer (2003). The PID filter controller
in Eq. (1) can easily be implemented in modern con-
trol hardware.

It is essential to emphasize that the PID control-
ler designed according to the IMC principle provides
excellent set-point tracking, but has a sluggish distur-
bance response, especially for processes with a small
time-delay/time-constant ratio (Morari and Zafiriou,
1989; Chien and Fruehauf, 1990; Horn et al., 1996;
Lee et al., 1998; Chen and Seborg, 2002; Skogestad,
2003). Since disturbance rejection is much more im-
portant than set-point tracking for many process con-
trol applications, a controller design that emphasizes
the former rather than the latter is an important design
goal that has recently been the focus of renewed re-
search.
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In the present study, a simple and efficient method
is proposed for the design of a PID filter controller
with enhanced performance. A closed-loop time con-
stant (λ) guideline is recommended for a wide range
of time-delay/time-constant ratios. A simulation study
was performed to illustrate the superiority of the pro-
posed method for both nominal and perturbed proc-
esses.

1. IMC Controller Design Procedure

Figures 1(a) and (b) show the block diagrams of
the IMC control and equivalent classical feedback con-
trol structures, respectively, where GP is the process,
G̃P  the process model, q the IMC controller, fR the set-
point filter, and Gc the equivalent feedback controller.

For the nominal case (i.e., GP = G̃P ), the set-point
and disturbance responses in the IMC control struc-
ture can be simplified as:

y G qr G q G d= + −( ) ( )
P P D1 2˜

According to the IMC parameterization (Morari and
Zafiriou, 1989), the process model G̃P  is factored into
two parts:

G̃ p pP m A= ( )3

where pm is the portion of the model inverted by the
controller, pA is the portion of the model not inverted
by the controller and pA(0) = 1. The noninvertible part
usually includes the dead time and/or right half plane
zeros and is chosen to be all-pass.

To obtain a good response for processes with poles
near zero, the IMC controller q should be designed to
satisfy the following conditions.
1. If the process GP has poles near zero at z1, z2, ...,

zm, then q should have zeros at z1, z2, ..., zm.
2. If the process GD has poles near zero, zd1, zd2, ...,

zdm, then (1 – GPq) should have zeros at zd1, zd2, ...,
zdm.
Since the IMC controller q is designed as q =

pm
–1f, the first condition is satisfied automatically. The

second condition can be fulfilled by designing the IMC
filter f as
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where λ is an adjustable parameter which controls the
tradeoff between the performance and robustness; r is
selected to be large enough to make the IMC control-
ler (semi-)proper; βi are determined by Eq. (5) to can-
cel the poles near zero in GD.

  

1 1

1

1
0 5

1

1

1− = −
+







+( )
= ( )

=
=

=

∑
G q

p s

ss z z

i
i

i

m

r

s z z
m

m

P

A

d d

d d

, ,
, ,

L
L

β

λ

Then, the IMC controller comes to be
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Thus, the closed-loop response is
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From the above design procedure, one can achieve
a stable closed-loop response by using the IMC con-
troller.

2. PID filter Controller Design for FOPDT
Process

The ideal feedback controller that is equivalent to
the IMC controller can be expressed in terms of the
internal model G̃P  and the IMC controller q:

Fig. 1 Block diagram of IMC and classical feedback con-
trol systems: (a) The IMC structure; (b) Feedback
control structure

(a)

(b)
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Substituting Eqs. (3) and (6) into Eq. (8) gives the ideal
feedback controller:
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Let us consider the first order plus dead time
(FOPDT) process, which is most widely utilized in the
chemical process industries, as a representative model.
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where K is the gain, τ the time constant, and θ the time
delay. The IMC filter structure is

f
s

s
= +

+( )
( )β

λ
1

1
112

It is noticed that the IMC filter form in Eq. (11)
was also utilized by Lee et al. (1998) and Horn et al.
(1996). The resulting IMC controller becomes
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Therefore, the ideal feedback controller is obtained as
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Since the ideal feedback controller in Eq. (13) does
not have the PID filter controller form, the remaining
issue is how to design the PID filter controller that
approximates the ideal feedback controller most
closely.

Approximating the dead time e–θ s with a 2/2 Pade
expansion
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It is important to note that the 2/2 Pade approximation
is precise enough to convert the ideal feedback con-
troller into a finite dimensional feedback controller
with barely any loss of accuracy. Expanding and rear-
ranging Eq. (15) gives
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As seen in Eq. (16), the resulting controller has the
form of the PID controller cascaded with a high order
filter. The analytical PID formula can be obtained as

K
Kc I D=

− +( ) = = ( )θ
λ β θ

τ θ τ θ
2 2 2 6

17, ,

The value of the extra degree of freedom β is selected
so that it cancels out the open-loop pole at s = –1/τ
that causes a sluggish response to load disturbances.
From Eq. (5), this requires [1 – (βs + 1)e–θ s/(λs +
1)2]|s=–1/τ = 0. Thus, the value of β is obtained as
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Furthermore, it is obvious from Eq. (5) that the
remaining part of the denominator in Eq. (16) contains
the factor (τs + 1). Therefore, the filter parameter b in
Eq. (1) can be obtained by taking the first derivative
of Eq. (19) below
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and substituting s = 0 as
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+ +
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The filter parameter in Eq. (1) can be easily ob-
tained from Eq. (16) as

a = ( )β 21

Since the high order cs2 term has little impact on
the overall control performance in the control relevant
frequency range, the remaining part of the fraction in
Eq. (16) can be successfully approximated to a simple
first order lead/lag filter as (1 + as)/(1 + bs). Our simu-
lation result (although not shown in this paper) also
confirms the validity of this model reduction.

The lead term (βs + 1) in the closed-loop transfer
function of Eq. (7) causes excessive overshoot in the
set-point response, which can be eradicated by adding
the set-point filter fR as:
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where 0 ≤ γ ≤ 1. The extreme case with γ = 0 has no
lead term in the set-point filter which would cause a
slow servo response. On the other hand, γ = 1 means
that there is no set-point filter. γ can be adjusted online
to obtain the desired speed of the set-point response.
The proposed study is also applicable to the process
with negligible dead time while it is mainly focused
on the first order time delay process.

3. Robust Stability

The well-known robust stability theorem can be
utilized to analyze the robust stability of the proposed
controller.

Robust Stability Theorem (Morari and Zafirou,
1989): Let us assume that all plants GP in the family ∏
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have the same number of RHP poles and that a par-
ticular controller Gc stabilizes the nominal plant G̃p .
Then, the system is robustly stable with the controller
Gc if and only if the complementary sensitivity func-
tion η̃  for the nominal plant G̃p  satisfies the follow-
ing bound:

  
˜ sup ˜η η ω

ω
l lm m∞

= ( ) < ( )1 24

Since η̃  = G̃p q = ˜ ˜G pmp
−1 f for the IMC controller, the

resulting Eq. (24) becomes:

  
˜ ˜G p fm mp
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Thus, the above theorem can be interpreted as |  lm | <
1/| η̃ | = 1/| ˜ ˜G pmp

−1 f|, which guarantees robust stability
when the multiplicative model error is bounded by
|∆m(s)| ≤   lm .

η̃ s s( ) ( ) < ( )
∞

∆m 1 26

where ∆m(s) defines the process multiplicative uncer-
tainty bound. i.e., ∆m(s) = (Gp – G̃p )/ G̃p . This uncer-
tainty bound can be utilized to represent the model re-
duction error, process input actuator uncertainty, and
process output sensor uncertainty, etc., which are very
frequent in the actual process plants.

For the FOPDT process, the complementary sensi-
tivity function η̃ (s) can be obtained as
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Substituting Eq. (27) and β into Eq. (26) yields
the robust stability constraint required for tuning the
adjustable parameters λ
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Substituting s = iω into Eq. (28) results in
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It is possible for uncertainty to occur in any of the
three process parameters i.e., θ, τ, and K. Consequently,
we have to consider the uncertainty in the different
parameters separately. Let us consider the FOPDT
process having the uncertainty in all three parameters
as
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It is most common practice that the FOPDT model
approximated from the high order process in the real
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process plant. Due to this for the time constant uncer-
tainty it is assumed that the small time constant ∆τ is
neglected/missing in developing the nominal model as
considered in Eq. (30) (Seborg et al., 2004). Then the
process multiplicative uncertainty bound becomes
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Substituting the above result into Eq. (29), we
obtain the robust stability constraint as follows:
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The above robust stability constraint is very use-
ful to adjust λ where there is uncertainty in the proc-
ess parameters. The robust stability constraint in Eq.
(32) can also be used to determine the maximum al-
lowable values of uncertainty in ±∆K, ±∆θ and ±∆τ or
various combinations of them for which robust stabil-
ity can be guaranteed. For example, a plot of
| η̃ (ω)  lm (ω)| vs. ω can be constructed for a small value
of any parametric uncertainty and/or combination of
different uncertainties.

4. Simulation Study

This section deals with the simulation study con-
ducted for three representative FOPDT processes: the
lag time dominant process, the equal dead time and
lag time process, and the dead time dominant process.

To evaluate the robustness of a control system,
the maximum sensitivity, Ms, which is defined by
Ms = max |1/[1 + GpGc(iω)]|, is used. Since the Ms is
the inverse of the shortest distance from the Nyquist
curve of the loop transfer function to the critical point
(–1, 0), a small Ms value indicates that the stability
margin of the control system is large. The Ms is a well-
known robustness measure and is used by many re-
searchers (Skogestad and Postlethwaite, 1996; Åström
et al., 1998; Chen and Seborg, 2002; Skogestad, 2003).

Typical values of Ms are in the range of 1.2–2.0
(Åström et al., 1998; Seborg et al., 2004). To ensure a
fair comparison, it is widely accepted for the model-
based controllers (DS-d, DS, and IMC) to tune by ad-
justing λ so that the Ms values become the same val-
ues. Therefore, throughout all our simulation exam-
ples, all of the controllers compared were designed to
have the same robustness level in terms of the maxi-
mum sensitivity, Ms.

To evaluate the closed-loop performance, two per-
formance indices were considered in the case of both a
step set-point change and a step load disturbance, viz.,
the integral of the time-weighted absolute error (ITAE)
defined by ITAE = ∫0

∞ t|e(t)|dt, and the overshoot which
acts as a measure of how much the response exceeds
the ultimate value following a step change in the set-
point and/or disturbance.

In this paper, the simulation study has been con-
ducted using the PID controller in the form of Eq. (1).
However, for real implementation, the “parallel form”
of the PID controller, G(s) = Kc{1 + 1/(τIs) + τDs/
[(0.1τDs) + 1]}(1 + as)/(1 + bs), which is widely used
in the real processes, can be applied to approximately
the same performance.

To evaluate the usage of manipulated input val-
ues, we compute TV of the input u(t), which is the sum
of all of its movement of up and down. If we discretize
the input signal as a sequence [u1, u2, u3, ..., ui, ...],
then TV = ∑i=1

∞|ui+1 – ui| should be as small as possible.
TV is a good measure of the smoothness of a signal
(Skogestad and Postlethwaite, 1996; Chen and Seborg,
2002; Skogestad, 2003).
4.1 Example 1: Lag time dominant process (θθθθθ/τττττ =

0.01)
Consider the following FOPDT process (Chen and

Seborg, 2002; Seborg et al., 2004):
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The proposed PID filter controller is compared
with other controllers based on existing methods, such
as the DS-d method, and those proposed by Rivera et
al. (1986), Horn et al. (1996), Lee et al. (1998) and
Lee et al. (1998) with a conventional filter. The con-
troller parameters, including the performance and ro-
bustness matrix, are listed in Table 1. In order to en-
sure a fair comparison, all of the controllers compared
are tuned to have Ms = 1.94 by adjusting λ. Figure 2
compares the set-point and load responses obtained
using the proposed method, the DS-d method, and the
methods proposed by Lee et al. (1998) and Horn et al.
(1996). The 2DOF controller using the set-point filter
was used in the DS-d method and the methods pro-
posed by Lee et al. (1998) and Horn et al. (1996) to
obtain an enhanced set-point response. It is important
to note that the set-point filter used for the set-point
response has a clear benefit when the process is lag
time dominant. In this case, it is observed that 0.4 ≤ γ
≤ 0 gives smooth and robust control performances. In
the proposed controller, γ in the set-point filter is se-
lected as γ = 0.45. The closed-loop response for both
the set-point tracking and disturbance rejection signi-
fies that the proposed method provides a superior re-
sponse for the same robustness.

TERRAPUB
We've typed "omega" instead of the "w" in the original manuscript. Is that okay?
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The robust performance is evaluated by inserting
a perturbation uncertainty of 20% in all three param-
eters in the worst direction simultaneously and find-
ing the actual process as Gp = GD = 120e–1.2s/(80s + 1).
The simulation results for the model mismatch for vari-
ous methods are given in Table 2. The performance
and robustness indices obviously demonstrate that the
proposed method has more robust performance than
the others.

4.2 Example 2: Equal lag time and dead time
process (θθθθθ/τττττ = 1)
Consider the process model described by Chen and

Seborg (2002) as follows
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Table 1 PID controller parameters and performance matrix for example 1 (θ/τ = 0.01)
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fThe Lee et al. (1998) method based on the conventional IMC filter form of f = 1/(λs + 1)
*1DOF controller is used only for the methods of Rivera et al. (1986)e and Lee et al. (1998)f
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Fig. 2 Simulation results for example 1

Tuning methods λ Kc τI τD
Set-point Disturbance

ITAE Overshoot TV ITAE Overshoot TV

Proposed methoda 1.131 0.124 0.50 0.167 1.96 0.007 3.17 14.55 1.206 1.96
Lee et al. (1998)b 1.330 0.806 3.947 0.3068 8.46 0.0 0.542 19.77 1.314 1.79
DS-dc 1.202 0.826 4.059 0.353 3.13 0.015 0.87 20.43 1.273 1.88
Horn et al. (1996)d 1.689 15.038 100.50 0.497 12.45 0.0 0.430 31.18 1.478 1.69
Rivera et al. (1986)e 0.408 0.714 100.50 0.4975 3.86 0.025 1.47 3785.0 1.411 1.35
Lee et al. (1998)f 0.248 0.805 100.41 0.399 3.15 0.018 1.136 3354.0 1.273 1.53
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The proposed PID filter controller is compared
with the DS-d controller and the controllers designed
by Lee et al. (1998), Horn et al. (1996), Rivera et al.
(1986) and Lee et al. (1998) with a conventional filter.
The controller parameter values are listed in Table 3
along with the performance matrix, where Ms = 1.84
is selected for all controller designs. Unit step changes
are introduced both in the set-point and in the distur-
bance for the simulation. The simulation results in Fig-
ure 3 indicate that both the disturbance and the set-
point responses are faster in the proposed controller.
The 2DOF controller structure is used for each design
method except Rivera et al. (1986), and Lee et al.
(1998) with a conventional filter. γ = 0 is selected for
the proposed controller. It is clear from Figure 3 and
Table 3 that the proposed controller exhibits better
performance for both the set-point and disturbance re-
sponse.
4.3 Example 3: Dead time dominant process (θθθθθ/τττττ =

5)
Consider the process with a long dead time stud-

ied by Luyben (2001) and Chen and Seborg (2002)
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The proposed and aforementioned design meth-
ods are compared. The controller settings with the per-
formance matrices are given in Table 4. All of the con-
trollers are designed to have Ms = 1.74. Since in the
case of a dead time dominant process, the 1DOF con-
troller is sufficient to achieve satisfactory control per-
formance, no set-point filter is used for any design
method.

The set-point and load responses are shown in
Figure 4. From this figure, it is apparent that the pro-
posed controller and the one designed by Lee et al.
(1998) with the conventional filter provide similar re-
sponses, while the DS-d and Horn et al. (1996) meth-
ods exhibit sluggish responses and take a long time to
settle the response.

The proposed controller has excellent performance
when the lag time dominates, but its performance be-
comes similar to that of the methods based on the con-
ventional filter when the dead time dominates. When
θ/τ >> 1, the filter time constant should be chosen as
λ ≈ θ >> τ  for the sake of closed-loop stability. There-
fore, the process pole at –1/τ is not a dominant pole in
the closed-loop system. Instead, the pole at –1/λ de-
termines the overall dynamics. Thus, introducing the
lead term (βs + 1) into the IMC filter to compensate
the process pole at –1/τ has little impact on the distur-
bance response.

Furthermore, the lead term usually increases the
complexity of the IMC controller, which in turn de-
grades the performance of the resulting PID controller

Tuning methods Set-point Disturbance

ITAE Overshoot ITAE Overshoot

Proposed methoda 13.36 0.3418 33.36 1.8798
Lee et al.  (1998)b 14.40 0.0387 76.26 1.7399
DS-dc 40.41 0.2817 98.25 1.7011
Horn et al.  (1996)d 16.32 0.0091 62.27 2.2096
Rivera et al.  (1986)e 28.73 0.5354 3766.0 2.1152
Lee et al.  (1998)f 21.21 0.5797 3338.0 1.9450

Tuning methods λ Kc τI τD
Set-point Disturbance

ITAE Overshoot TV ITAE Overshoot TV

Proposed methoda 0.499 0.458 0.5 0.166 2.28 0.0034 2.835 2.66 0.626 2.837
Lee et al. (1998)b 0.596 1.042 1.304 0.270 2.83 0.0025 1.050 3.31 0.622 1.368
DS-dc 0.771 1.055 1.444 0.313 2.71 0.0006 1.375 3.85 0.633 1.419
Horn et al. (1996)d 0.73 1.010 1.50 0.333 3.59 0.0002 1.059 4.12 0.672 1.163
Rivera et al. (1986)e 0.503 0.998 1.50 0.333 2.33 0.1481 2.124 4.26 0.670 1.151
Lee et al. (1998)f 0.309 1.055 1.382 0.289 1.95 0.1273 1.981 3.52 0.634 1.394

Table 3 PID controller parameters and performance matrix for example 2 (θ/τ = 1)

aa = 0.907, b = 0.102; f
s

R =
+

1

0 908 1.

b f
s

R =
+

1

0 94 1.

c f
s

s s
R =

+
+ +

0 722 1

0 452 1 44 12

.

. .

da = 0.975, b = 1.179, c = 0.179; f
s

R =
+

1

0 976 1.
eb = 0.167
*1DOF controller is used only for the methods of Rivera et al. (1986)e and Lee et al. (1998)f

Table 2 Robustness analysis for example 1
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by causing a larger discrepancy between the ideal feed-
back controller and thus the PID controller.

It is also important to note that as the order of the
filter increases, the power of the denominator term
(λs + 1) also increases, which can cause an unneces-
sarily slow output response. As a result, in the case of
a dead time dominant process, the PID controller based
on the IMC filter that includes no lead term offers bet-
ter performance.
4.4 Example 4: Polymerization process

An important viscosity loop in a polymerization
process was identified by Chien et al. (2002) as fol-
lows:
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Tuning methods λ Kc τI τD
Set-point Disturbance

ITAE Overshoot TV ITAE Overshoot TV

Proposed methoda 1.408 0.366 2.5 0.833 29.95 0.0451 1.268 68.34 0.989 1.312
Lee et al. (1998)b 1.423 0.408 2.799 0.721 30.79 0.0641 1.044 67.67 0.992 1.116
DS-dc 2.706 0.316 2.555 0.053 37.57 0.0115 0.766 85.88 0.984 1.052
Horn et al. (1996)d 2.648 0.430 3.5 0.714 41.76 0.0502 1.022 87.01 0.993 1.061
Rivera et al. (1986)e 3.117 0.431 3.5 0.714 40.86 0.0436 0.996 87.06 0.992 1.048
Lee et al. (1998)f 1.798 0.417 2.838 0.759 30.66 0.0642 1.115 66.77 0.990 1.066

Fig. 3 Simulation results for example 2

The above-mentioned process has a large open-
loop time constant of 100 min and a dead time of 10
min, which is also quite noteworthy. Chien et al. (2002)
designed the PI controller with the modified Smith
Predictor (SP) by approximating the above process in
the form of an integrating model with a long dead time.
Figure 5 compares the nominal responses by the pro-
posed PID filter controller and that by the modified
SP. In the proposed controller, λ = 8.0 is selected and
the resulting tuning parameters are obtained as Kc =
0.6446, τI = 5.0, τD = 1.6667, a = 23.4146 and b =
0.9781. The simulation was conducted by inserting the
step set-point change at t = 0 followed by a load step
change of –1.0 at t = 90.

The proposed controller uses a simple feedback
control structure without any dead time compensator.
Nevertheless, the proposed PID filter controller pro-
vides a superior performance, as shown in Figure 5.

Table 4 PID controller parameters and performance matrix for example 3 (θ/τ = 5)

aa = 0.998, b = 0.689
da = 2.164, b = 3.155, c = 2.156
eb = 0.96
*1DOF controller is used for all of the methods
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The disturbance rejection afforded by the proposed
controller has a smaller settling time, whereas the
modified SP controller described by Chien et al. (2002)
shows a sluggish and required long settling time.

As regards the set-point response, the modified
SP controller has an initially fast response, because of
the elimination of the dead time, but afterwards it be-
comes slow. On the other hand, the speed of the re-
sponse for the proposed controller is uniform and the
settling time is similar to that by the modified SP.

It is important to note that the SP control configu-
ration has a clear advantage of eliminating the time
delay from the characteristic equation, which is very
effective to set-point tracking performance. However,
this advantage is lost if the process model is inaccu-
rate. In order to evaluate the robustness against model
uncertainty, a simulation study was conducted for the

worst case of model mismatch by assuming that the
process has a 20% mismatch in the three process pa-
rameters in the worst direction, as follows
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+
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12.

The closed-loop responses are presented in Fig-
ure 6. Notice that the proposed method and the modi-
fied SP method described by Chien et al. (2002) have
similar disturbance rejection responses for the model
mismatch case. However, the set-point response af-
forded by the modified SP controller shows severe os-
cillation, while the proposed controller gives a more
robust response.
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Fig. 5 Simulation results of the polymerization process
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Fig. 4 Simulation results for example 3
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In the proposed tuning rule, the closed-loop time
constant λ controls the tradeoff between the robust-
ness and performance of the control system. As λ de-
creases, the closed-loop response becomes faster and
can become unstable. On the other hand, as λ increases,
the closed-loop response becomes stable but sluggish.
A good tradeoff is obtained by choosing λ to give an
Ms value in the range of 1.2–2.0 (Åström et al., 1998;
Seborg et al., 2004). The λ guideline for several ro-
bustness levels is plotted in Figure 7.

Conclusions

A simple analytical design method for a PID con-
troller cascaded with a lead/lag filter was proposed
based on the IMC principle in order to improve its dis-
turbance rejection performance. The proposed method
also includes a set-point filter to enhance the set-point
response like the 2DOF controller suggested by Lee et
al. (1998), Horn et al. (1996) and Chen and Seborg
(2002). FOPDT processes with three representative
different θ/τ ratios were used for the simulation study.
The proposed PID filter controller consistently pro-
vides superior performance over the whole range of
the θ/τ ratio, while the other controllers based on the
IMC-PID design methods take their advantage only in
a limited range of the θ/τ ratio. In particular, the pro-
posed controller shows excellent performance when the
lag time dominates. The proposed controller was also

compared with the more sophisticated controller, such
as the modified Smith Predictor, in the case of the vis-
cosity loop in a polymerization process. The result
shows that the proposed controller gives satisfactory
performance without the external dead time compen-
sator. A guideline of closed-loop time constant λ was
also proposed for a wide range of θ/τ ratio.
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