
 

Multi-loop PI Controller Design for Enhanced 
Disturbance Rejection in Multi-delay Processes 

Truong Nguyen Luan Vu and Moonyong Lee 

  
Abstract—In this paper, a new design method is proposed for 
multi-loop PI controllers in the multiple input, multiple output 
(MIMO) systems in two cases: set-point tracking and disturbance 
rejection.  The generalized IMC-PID approach [1], which is extended 
from single input, single output (SISO) systems to MIMO systems, is 
considered to identify the tuning parameters of multi-loop PI 
controllers. However, there is not enough robustness in multi-delay 
systems which contain a lot of noise and disturbance. The proposed 
design method can solve this problem by using the magnitude of 
sensitivity (Ms) theory. A simulation study is performed for the 
well-known process model and the response performances compared 
favorably with some famous tuning methods. The results show that the 
proposed method is superior to existing techniques for multi-delay 
processes. 
 
Keywords— Multi-loop PI controller, Multi-delay process, IMC-PID 
approach, Ms Criterion. 

I. INTRODUCTION 

T HE  multi-loop PID/PI controller has been studied for many 
decades. In the 1980s, the famous tuning method for 
calculating multi-loop PID controller parameters was the 

Internal Model Control (IMC) [2], it was published by C.G. 
Economou and M. Morari. A typical method which related to 
the multi-loop IMC design method was proposed by M.S. 
Basualdo and J. L. Marchetti [3], which considers to the 
interactions between the control loops. The biggest log 
modulus (BLT) tuning design method [4] was published by W. 
L. Luyben and it is still popular in process control today. In the 
1990s, Loh et al. [5] studied the auto-tuning procedure for 
improving the closed-loop frequency responses in MIMO 
systems, and Jung et al. [6] presented the decentralized lambda 
tuning (DLT) design method with the same goal of improving 
stability and robustness.  Recently, the generalized IMC-PID 
approach is designed for the multi-loop PID control systems by 
Lee et al. [1]. This approach is a variation of  Lee et al. [7] 
which admitted  to SISO systems. Many multi-loop tuning 
design methods exist for set-point tracking problems today. 
However, there are few methods available for disturbance 
rejection despite the fact that disturbance rejection is a more 
serious problem in industry. Therefore, we proposed a new 

design method which proceeds from the generalized IMC-PID 
approach and Ms Criterion. The aim of this method is to design 
a multi-loop PI controller that enhances disturbance rejection as 
well as set-point tracking. 
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In the multi-loop IMC control systems, the performance and 
robustness of the closed-loop system largely depends on the 
closed-loop time constant ( λ ). The optimal value for the 
closed-loop time constant can be obtained by using Ms Criteria. 
The proposed method can be compensated the influence of 
disturbance effectively by compensating the dominant poles in 
the diagonal element of the process transfer function. 
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Fig.1  Block diagram for the multi-loop control system. 

II. THE MULTI-LOOP PI CONTROLLER DESIGN  
In the nxn multi-loop feedback control system shown in Fig. 

1, the closed-loop response to the set-point change is  
 

( ) 1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )c cs s s s s s s s

−
= = +y H r I G G G G r  (1) 

 
where H(s) is the closed-loop transfer function; G(s) is the 
process transfer function which is open-loop stable; )(~ scG  is 
the multi-loop controller with diagonal elements only; y(s) and 
r(s) are the controlled variable and the set-point, respectively.  
Suppose that the desired closed-loop response of the diagonal 
elements in the multi-loop system is given by 
 

],...,,[)(~
21 nRRRdiags =R  (2) 

 
According to the design strategy of the IMC controller [1], 

the desired closed-loop response Ri of the ith loop is presented 
by 
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where Gii+ is the non-minimum part of Gii and chosen to be the 
all pass form; iλ is an adjustable constant for system 
performance and robustness; ni is chosen for the IMC controller 
to be realizable. 
βi is designed to cancel the dominant poles in the diagonal 
process element. 
 

( )
11

1 i

i

ii+ i
n

i s = p

G (s)(β s+ )-
λ s+

0=  (4) 

 
Note that iλ is analogous to the closed-loop time constant 

and thus determines the speed of the closed-loop response. The 
multi-loop controller )(~ scG  with integral term can be 
expressed in a Maclaurin series as 
 

[ )(~~~1)(~ 32
210 sOss

s
s cccc +++= GGGG ]

2

 (5) 

 
where  can be considered as the integral, 
proportional, and derivative terms of the multi-loop PID 
controller, respectively. 

0 1,c c cG G ,G

As indicated from (5), the impact of proportional and 
derivative terms (i.e., 21

~,~
cc GG ) dominates at high frequencies 

and thus they should be designed based on the process 
characteristics at high frequencies. On the other hand, the 
integral term 0

~
cG  is dominating at low frequencies and thus 

needs to be designed based on the characteristics at low 
frequencies. 

In the multi-loop system, the characteristic of the 
closed-loop interaction is changed according to frequency 
range. Using this frequency-dependent properties of the 
closed-loop interactions, analytical design of the multi-loop 
PID controller can be largely simplified while it still takes the 
interaction effect fully into account as follows [1]:  
At high frequencies, the magnitude of open loop gain becomes 

( ) ( )cj jω ωG G 1 and thus H(s) can be approximated to 

 
)(~)()(~)())(~)(()( 1 sssssss ccc GGGGGGIH ≈+= −  6) 

 
It indicates that c0

~G  and c1
~G  can be designed by considering 

only the diagonal elements in G(s), which means the 
generalized IMC-PID method for the SISO system [7] can be 
applied to the design of the proportional and derivative terms in 
the multi-loop PID controller. Therefore, at high frequencies, 
the ideal multi-loop feedback controller to give the desired 
closed-loop response )(~ sR is given by 
 

11 ))(~)((~)(~)(~ −− −= ssssc RIRGG  (7) 
 

where ],...,,[)(~
2211 nnGGGdiags =G  

Accordingly, the ideal multi-loop controller of the ith loop 
can be designed by 
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where Gii- is the minimum part of Gii.  

 Since Gii+(0)=1, (8) can be rewritten in a Maclaurin series 
with an integral term as 
 

 ))(0
2

)0(
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where fi(s) = Gci(s)s 
The standard PID control algorithm is given by   
 

1( ) (1 )ci ci Di
Ii

G s K s
s

τ
τ

= + +  (10) 

  Comparing (9) with (10) gives the analytical tuning rules for 
the proportional gain of the multi-loop PI controller as follows: 
 

  (11) '(0)ci iK f=

 
At low frequencies, according to the design of the integral 

term 0
~

cG , the interaction effect between the control loops can 
not be neglected. Expansion of G(s) in a Maclaurin series gives 
 

)()( 32
210 sOsss +++= GGGG  (12) 

 

where 2/)0(";)0(';)0( 210 GGGGGG ===  
By substituting (5) and (12) into (1), one can obtain H(s) as 

 
)()~()( 21

00 sOss c +−= −GGIH  (13) 
 

Furthermore, the desired closed-loop response R~ can also 
be written in Maclaurin series as 
 

)()0('~)0(~)(~ 2sOss ++= RRR  (14) 
 
where IR =)0(~  because  1)0( =+iiG
 
 By comparing the diagonal element of H(s) in (13) and 

in (14) for the first-order s term, one can get the 
analytical tuning rule for the integral time constant of the 
multi-loop PID controller as follows 

(s)R
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 Tuning formulae by (11) and (15) provide an important 
advantage to solve the optimization problem for finding the 
PID parameter values: for a given process, all the PID 
parameters can be expressed by a single design 
parameter iλ and thus the dimension of the search space for 
optimization is greatly reduced. 
 The lead term by ( 1)i sβ + in (3) can cause an excessive 
overshoot in the set-point response. The two degree of freedom 
structure can overcome this problem by designing a set-point 
filter qi  as  
 

1( )
( 1fi

i

q s
sβ

=
+ )

 (16) 

 

III. MS CRITERION FOR MIMO SYSTEMS 
 Ms tuning is the frequency-domain method which relates to 
the resonant peak Ms. Ms values are related to the resonant 
peak of the sensitivity function. The relative stability and 
robustness of a stable closed-loop system can be suggested by 
the magnitude of Ms. In 1996, Skogestad and Postlethwaite [8] 
employed Ms as a tool for measuring system robustness. 
In 1998, Astrom et al. [9] proposed that the desirable values of 
Ms for SISO systems are in the range of 1.2 to 2. Ms tuning 
provides a limit for the closed-loop time constant for a model, 
and it allows the optimal controller parameters to be found. 
 The sensitivity function in the multi-loop control system can 
be represented by 
 

- 1
c( ) ( +  ( s ) ( s ) )  s =S I  G G  (17) 

 
 The sensitivity frequency response can be found by setting s 
= jω  in term of ω  and λ as follows 
 

[ ]-1
c( jω ,λ ) +  ( jω ,λ ) ( jω ,λ )=S I  G G  

⎥

 (18) 

 
 The sensitivity function can be expressed by the matrix form 
as 

{ }(j , )

11 12 1n

21 22 2n
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n1 n2 nn
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S S S

S

S S S

ω λ
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S  (19) 

 
 The maximum sensitivity Ms is obtained as the maximum 
value of the sensitivity function over frequencies 
 

{ } { }λ,ω  0
          

= = maxij ijMs S (jω,λ)
≥

 Ms  (20) 

 

 The peak magnitude of the sensitivity function can be 
expressed by the matrix form as 
 

{ }
11 12 1n

21 22 2n
ij

n1 n2 nn

Ms Ms Ms
Ms Ms Ms

Ms

Ms Ms Ms

⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎣ ⎦

Ms                                  (21) 

 
 The proposed Ms tuning method is aimed to improve the 
performance and robustness of closed-loop frequency 
responses in the multi-loop control system by finding an 
optimal λ .  The multi-loop control system can also be made to 
meet the stability bounds and all the multi-loop PID parameters 
can be expressed by a single design parameter iλ .This 
optimization problem in the frequency domain is 
 

λ,ω  0 i
min ( )

s.t.  
ii

ii low

Ms

Ms  Ms   
≥

≥
∑

 (22) 

 
where Mslow is the lower bound of the diagonal Ms and it also 
can be considered as optimizing value to minimize the integral 
absolute error (IAE). Fig. 2 shows the effects of Mslow on the 
overall performance in the OR column [11]. It implies that at 
small values of Mslow, the IAE values are large. However, when 
Mslow increases to high values, the IAE values also increase.  

 
Fig.2  Effects of Mslow on the IAE: OR column. 
 
 Our extensive simulation study shows that the desirable 
value of Mslow lies between 1.8 and 2. This range of Mslow can 
be used for the trade-off between sluggish, overshoot, 
oscillation, and minimizing IAE. 
 According to (22) it is easy to find the optimal value of λ  
which makes multi-loop control systems stable and robust not 
only for set-point tracking but also for disturbance rejection. 
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IV. ROBUSTNESS STABILITY ANALYSIS 
 
 While the process model contains uncertainties in its 
parameters, the stability robustness of multi-loop control 
system become more importantly. Therefore, several 
uncertainty models are considered to demonstrate the stability 
robustness of proposed control system. For the multi-loop 
control system included a process output uncertainty 
as , stability robustness of the closed-loop 
system can be obtained by [12] 

)()]([ sGsI oΔ+

 
{ }1( ) 1/ [ ( ) ( )] ( ) ( )o c cj I G j G j G j G jω σ ω ω ω−Δ ≤ + ω (23) 

 
where is stable and )(soΔ σ is denoted the maximum 
singular values of the closed-loop transfer function.  

 
Fig.3  Stability regions of output uncertainties 
 
 Figure 3 has shown the stability bounds for OR column with 
proposed, BLT, and DLT controller, respectively. It is implied 
that the proposed control system has the largest stability region 
of process output uncertainty at low frequencies. Therefore, the 
proposed PI control system is more robustness stability than 
those by BLT and DLT.  

V. SIMULATION STUDY 
 In the following case studies, we demonstrate our tuning 
rules with 2x2 and 3x3 systems from the open literature. The 
proposed method is also compared with several well-known 
tuning methods such as BLT and DLT tuning methods. 
 
Example 1: Consider the Wardle and Wood (WW) column 
which was studied by W. Luyben in 1986. This can be 
represented by 
 

6 1

8 8

0.126 0.101
60 1 (48 1)(45 1)( )

0.094 0.12
38 1 35 1

s s

s s

e e
s s ss

e e
s s

− −

− −

2⎡ ⎤−
⎢ ⎥+ + +⎢ ⎥=
⎢ ⎥−
⎢ ⎥

+ +⎣ ⎦

G  (24) 

 
 By using (22), the optimum λi values can be obtained as 
34.75 and 34.28 for loop 1 and 2, respectively. ni in (3) was 
chosen as 2 for all loops according to the process model order. 
The value of 1.9 was chosen for Mslow.  Figure 4 shows the 
closed-loop frequency response of the multi-loop PI control 
system for the WW column in the case of step changes in 
disturbance. As shown in the Figure 4, the proposed method 
provides more well-balanced and faster responses when 
compared to other existing methods.  Besides, the proposed 
method can give the minimum integral absolute error (IAE) 
values which are shown in Table 1. 

 
Fig.4 Closed-loop response to sequential step changes in 
disturbance for WW column 
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Table 1 
Tuning results by the proposed PI method and various 

methods: WW column 
 

 Proposed BLT DLT 

Kc 53.4, -20.9 27.4, -13.3 33.3,- 21.7 

Iτ  63.2, 38.8 41.4, 52.9 63.0, 39.0 

Step changes in set-point 
IAE1 27.05, 

36.41 
31.96, 
65.68 

37.42, 
29.93 

IAE2 18.9,  
39.49 

26.60, 
87.92 

29.73, 
38.51 

IAEt 121.85 212.16 135.59 
Step changes in disturbance 

IAE1 1.16, 0.56 1.16, 0.56 1.49, 0.91 1.49, 0.91 1.83, 0.67 1.83, 0.67 

IAE2 IAE2 0.24, 1.81 0.24, 1.81 0.55, 3.67 0.55, 3.67 0.35, 1.76 0.35, 1.76 

IAEt IAEt 3.76 3.76 6.62 6.62 4.61 4.61 
  
IAEi   : IAE for the step change in loop i.  IAEt   : sum of 
each IAEi. 
IAEi   : IAE for the step change in loop i.  IAEt   : sum of 
each IAEi. 

  

Example 2: Consider the Ogunnaike and Ray (OR) column, a 
multi-product plant distillation column for separation of a 
binary ethanol-water mixture, was modeled experimentally in 
Ogunnaike et al. [11].The transfer function matrix of the OR 
column is given by 

Example 2: Consider the Ogunnaike and Ray (OR) column, a 
multi-product plant distillation column for separation of a 
binary ethanol-water mixture, was modeled experimentally in 
Ogunnaike et al. [11].The transfer function matrix of the OR 
column is given by 
  

2.6 3.5

6.5 3 12

9.2 9.4

0.66 0.6 0.0049
6.7 1 8.64 1 9.06 1

1.11 2.36 0.01( )
3.25 1 5 1 7.09 1
34.68 46.2 0.89(11.61 1)
8.15 1 10.9 1 (3.89 1)(18.8 1)

s s s

s s s

s s

e e e
s s s
e e es
s s s
e e s e

s s s s

− − −

− − −

− −

⎡ ⎤− −
⎢ ⎥+ + +⎢ ⎥

− −⎢ ⎥
=⎢ ⎥+ + +⎢ ⎥

− +⎢ ⎥
⎢ ⎥+ + +⎣ ⎦

G

s−

+

 (25) 

 
The optimum λi values were found as 10.07, 8.78, and 2.3 for 
each loop, respectively. Step changes in set-point and 
disturbance were sequentially made in the individual loops.  
The set-point filters can be found as 
 

1,2,3
1 1 1( ) { , , }

(5.48 1) (3.43 1) (3.39 1)fq s
s s s

=
+ + +  

 
Figures 5 show the closed-loop responses for sequential step 
changes in set-point and disturbance, respectively. Sequential 
step changes of magnitude 1, 1, and 10 were made to each loop.   

 

 
 

 
 

 
 
Fig.5 Closed-loop response to sequential step changes in 
set-point for OR column 
 
 
 
The BLT method shows high overshoot and oscillation in the 
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Table 2 
Tuning results by the proposed PI method and various 

methods: OR column 
 

 Proposed BLT DLT 
Kc 1.62, -0.32,  

9.43 
1.51, -0.29, 
 2.63 

0.61, -0.14,
 0.39 

Iτ  9.32,  
7.27,  
12.40 

16.4,  
4.18, 
6.61 

8.00,  
6.50,  
6.85 

Step changes in set-point 
IAE1 18.15, 

24.2, 
81.48 

32.06, 
70.22, 
149.85 

35.86, 
55.49, 
975.54 

IAE2 3.51, 
15.76, 
24.13 

6.19, 45.71, 
43.07 

6.99, 35.74, 
297.52 

IAE3 0.07, 0.06,  
2.32 

0.12,  
0.15,  
3.59 

0.12,  
0.10,  
27.58 

IAEt 169.68 350.96 1434.96 
Step changes in disturbance 

IAE1 6.06,  
8.22,  
34.37 

10.86, 
11.9, 
90.96 

13.12, 
17.46, 
463.50 

IAE2 2.95,  
22.22, 
 34.39 

5.28, 
60.93, 
94.68 

8.12, 
46.51, 
505.40 

IAE3 0.05,  
0.07,  
1.32 

0.01, 0.02,  
2.51 

0.08, 0.08, 
22.83 

IAEt 109.54 277.15 1077.10 
 

closed-loop responses while the DLT method leads to very 
sluggish and unbalanced ones with large IAE values. The 
proposed method provides fast and well-balanced responses 
through the illustrated example. The superiority of the 
proposed method is also demonstrated by comparison of the 
IAE values which are listed in Table 2. 
 

VI. CONCLUSION 
The tuning of multi-loop PI controller for the multi-delay 
process is usually a complex problem. In this paper, the 
generalized-IMC approach is used to develop a simple but 
efficient design method for the multi-loop PI controller. The 
proposed method has several clear advantages. Firstly, the 
method is straightforward and it can be easily implemented in 
multivariable control systems. Secondly, Ms Criterion is very 
suitable for achieving good stability and robustness in 
multi-loop PI control systems. Furthermore, it is provided the 
minimizing of IAE values, while other control parameters are 
well-balanced. The simulation results show that the proposed 

method is very effective both set-point tracking and disturbance 
rejection in the multi-loop control systems. 
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