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� Support Vector Machine Algorithm is used to estimate oxygen–steam ratios in coal gasification process.
� The coupled simulated annealing optimization tool obtains the optimal model parameters.
� The model has been developed and tested using 100 series of the data.
� Excellent agreement between the results of model and reported data is observed.
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a b s t r a c t

Coal gasification operation appears to be an essential element in the advanced energy systems, where the
reaction between oxygen, steam and coal results in production of syngas (e.g., a mixture of carbon
monoxide and hydrogen) under elevated pressure and temperature conditions. An efficient design for
gasification process is expected if proper oxygen/steam rations are selected such that a thermal balance
is established between the exothermic and endothermic reactions, leading to yield maximization of
desired products in most cases. In this article, a rigorous modeling approach using support vector
machine (SVM) algorithm is developed to estimate optimum oxygen–steam ratios required to balance
the released heat and heat requirement in coal gasification process. An acceptable match between
modeling outputs and real data is noticed so that the average absolute error is lower than 1.0%.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

In coal industry, coal gasification is considered as an important
technology to produce a variety of sustainable energy products and
electricity with low emissions. The technique has been recognized
to generate gas which has many applications in different industrial
sectors including chemicals, fuels and chemical intermediates
[1–5]. The coal gasification is largely utilized in fuel gas production
in partial oxidation and pyrolytic processes in which methane,
carbon monoxide and hydrogen are the main fuel elements in
the product gas [6,7].

The below reactions with contribution of steam, oxygen and
carbon clearly describe the chemistry of coal gasification process
[8,9]. Ref. No. [10] lists the standard enthalpy change of the reac-
tions at the temperature of 298 K:

Gasification:

Cþ O2 ! CO2 � 393:5kJ ð1Þ
CþH2O! COþH2 þ 131:3kJ ð2Þ
Cþ 2H2O! CO2 þH2 þ 90:2kJ ð3Þ
Cþ CO2 ! 2COþ 172:4kJ ð4Þ

Partial oxidation:

Cþ 0:5O2 ! CO� 110:5kJ ð5Þ
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Water gas shift:

COþH2O! CO2 þH2 � 41:1kJ ð6Þ

Methanation:

2COþ 2H2 ! CH4 þ CO2 � 247:3kJ ð7Þ
COþ 3H2 ! CH4 þH2O� 206:1kJ ð8Þ
CO2 þ 4H2 ! CH4 þH2O� 165kJ ð9Þ
Cþ 2H2 ! CH4 � 74:8kJ ð10Þ

Theoretically, it is possible to make a thermal balance between
endothermic and exothermic reactions for the purpose of design of
gasification processes. To attain this goal, the feed rate is an impor-
tant parameter to be changed [10]. For instance, the amounts of
steam and oxygen required for Reactions (2) and (5) are 0.45 and
0.27 mol/mole of carbon, respectively; while the ratio of oxygen
to steam is equal to 0.6. Other influential reactions in the process
are given as below:

CþH2O! COþH2 þ 131:3kJ ð11Þ
1:2Cþ 0:6O2 ! 1:2CO� 131:3kJ ð12Þ
Net : 2:2CþH2Oþ 0:6O2 ! 2:2COþH2 ð13Þ

It has been proved that a number of reactions take place
throughout the coal gasification operation, simultaneously. Hence
the process control in terms of operating conditions is not an easy
task. However, the maximum amount of desirable products is
achievable if the key process variables such as pressure, tem-
perature, oxygen/steam ratio, reaction time, and feed, recycle and
product flow rates are carefully selected [11,12]. For example,
the process under low temperature, elevated pressure and recycled
hydrogen can lead to synthesis of high-energy fuel gas (e.g.,
methane) in practical cases. [10]. It is worth noting that the oxy-
gen–steam ratio is taken into account as an importation input vari-
able if the target is to optimize a coal gasification process [10].

Based on the importance of input parameters for the coal gasifi-
cation process, it seems necessary to determine the combined influ-
ence of pressure and temperature on oxygen/steam ratio through
developing a proper predictive tool. Therefore, an extensive effort
was made to find out the relationship between the process condi-
tions and performance and then present an efficient strategy which
is useful to properly design coal gasification processes. The high
capable technique employed in this study is on the basis of support
vector machine (SVM) algorithm that offers accurate and reliable
predictions. More discussion on the topic along with systematic
statistical analysis are provided in the subsequent sections.

2. Methodology for the development of SVM-based predictive
tool

2.1. LSSVM modeling

Based on the machine learning theory, a strong predictive
model which is called SVM was developed [13–15]. This strategy
has been widely utilized in two important categories; namely,
regression analysis and classification [16–20]. It has been proved
that artificial neural network (ANN) systems have serious draw-
backs, though they can be safely used for a number of cases in
science and engineering subjects. Describing one of disadvantages,
several parameters such as type of activation function and number
of hidden layers and nodes should be carefully chosen to properly
model the behavior of a certain process. On the other hand, deter-
mination of these network variables is generally obtained through
a trial and error procedure which is time-consuming and costly
[21–25]. The gradient descent search process to optimize the mod-
el’s weights and biases may converge to a local minimum solution.
Therefore, global solution is not guaranteed, since there is always
the chance of getting stuck in a bad local solution [24–28].
Although it offers satisfactory results in some cases but often tends
to over-fit the training data [24,29]. The over-fitting problem is a
critical issue that usually leads to poor generalization performance.
There are several criteria which may demonstrate the superiority
of SVM-based models over the ANN-based methods including:
more guaranteed to converge toward the global optimum; no need
to identify the network topology in advance; less likely to be
over-fitted to the training data; fewer adjustable parameters and
acceptable generalization performance [17].

The SVM is a supervised learning technique from the field of
machine learning applicable to both regression and classification
analysis [14,16,18,20,30–33]. On the other hand, one of the major
drawbacks of the SVM is the necessity to solve a large-scale
quadratic programming problem [34]. This disadvantage has been
overcome by modifying the traditional SVM to the least-squares
SVM (LS-SVM), which solves linear equations (linear program-
ming), instead of quadratic programming problems to reduce the
complexity of optimization process [13,33,35]. Considering the
problem of approximating a given dataset fðx1; y2Þ; ðx2; y2Þ; . . . ;

ðxN; yNÞg with a nonlinear function:

f ðxÞ ¼ hw; UðxÞi þ b ð14Þ

where h:; :i represents a dot product; UðxÞ represents the nonlinear
function that performs regression; b and w are bias terms and
weight vector, respectively. In the LS-SVM, the optimization prob-
lem for function estimation is formulated as [34,36]:

min
w; b; e

Jðw; eÞ ¼ 1
2
kwk2 þ 1

2
c
XN

k¼1

e2
k ð15Þ

s:t: yk ¼ ek þ hw; UðxkÞi þ b k ¼ 1; . . . ; N ð16Þ

where ek 2 R are error variables; and c P 0 is a regularization con-
stant. To solve this optimization problem, Lagrange function is
developed as [34,36]:

LLS-SVM ¼
1
2
kwk2 þ 1

2
c
XN

k¼1

e2
k �

XN

k¼1

akfek þ hw; UðxkÞi þ b� ykg ð17Þ

where ak 2 R are Lagrange multipliers. The solution of Eq. (17) can
be determined by partially differentiating the Lagrange function
with respect to w, b, ek and ak [34,36]:

@LLS-SVM

@w
¼ 0! w ¼

XN

k¼1

akUðxkÞ

@LLS-SVM

@b
¼ 0!

XN

k¼1

ak ¼ 0

@LLS-SVM

@ek
¼ 0! ak ¼ cek

@LLS-SVM

@ak
¼ 0! hw; UðxkÞi þ bþ ek � yk ¼ 0

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð18Þ

By defining 1v ¼ ½1; . . . ; 1�; Y ¼ ½y1; . . . ; yN�; a ¼ ½a1; . . . ; aN�
and eliminating w and e, the following linear equations are
obtained [34]:

0 1T
N

1N Xþ c�1IN

" #
b
a

� �
¼

0
Y

� �
ð19Þ

where IN refers to the N � N identity matrix and X is the kernel
matrix that is defined as [34]:

Xlk ¼ UðxlÞUðxkÞ ¼ Kðxl; xkÞ; l; k ¼ 1; . . . N ð20Þ

There are several kernel functions that can be used here includ-
ing linear, polynomial, spline, and radial basis functions [37,38]. On
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the other hand, radial basis, and polynomial functions are most
widely used functions.

Kðxk; xlÞ ¼ expð�kxk � xlk2
=r2Þ ð21Þ

Kðxk; xlÞ ¼ 1þ xT
k xl=c

� �d ð22Þ

where r denotes the width of the RBF which controls the regression
ability and d is the polynomial degree.

2.2. Data gathering and preprocessing

Experimental data used in this study were collected from lit-
erature [10] and reported in Table 1. For modeling purpose, inde-
pendent variables including temperature and pressure have been
selected as input parameters and the value of oxygen–steam ratio
was assigned as the target (output) variable. Fig. 1 shows a graphi-
cal illustration of variation of the applied oxygen–steam ratio data
with temperature and pressure as predicted by the tool.

In the next step the data set was divided into three sub-data
sets including the ‘‘training set’’, the ‘‘validation set’’, and the ‘‘test
set’’. Generally, the training data are used to develop the network.
The second part namely validation set is used for selecting optimal
parameters of the LS-SVM model and also to avoid the over-fitting
problems. The task of remaining data, i.e., test set, is to evaluate the
capability of the trained model [17,39]. This division is commonly
performed randomly. For this purpose, 70%, 15%, and 15% of the
main data sets are randomly selected for the training, validation,
and test sets, respectively.

During the computation, the widely used kernel function, i.e.,
radial basis function (RBF), has been implemented. It has the fol-
lowing general form [39,40]:

Kðxk; xlÞ ¼ expð�kxk � xlk2
=r2Þ ð23Þ

In Eq. (23), r stands for a decision variable which is obtained
throughout the optimization computations [39].
Table 1
Statistical description of the applied data [10] for developing predictive models.

Parameter Min Max Average

Temperature (K) 900 1500 1239
Pressure (kPa) 101 4053 2465
Oxygen–steam ratio (m3(n)/kg) 0.7 12.1 7.4
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Fig. 1. Graphical illustration of domain of applied data [10] for oxygen–steam ratio
modeling.
In this study, Coupled Simulated Annealing (CSA) technique
[41] was applied to obtain the optimum values of the r2 and c.
Indeed, the CSA enhances the optimization process quality. A group
of simulated annealing processes coupled by their acceptance
probabilities characterizes the CSA [41]. The simulated annealing
processes are parallel to each other. In the CSA technique, each sin-
gle simulated annealing process has information on the status of
all others’ costs. The information between single SA processes is
shared via an acceptance probability function and coupling term
[41]. In the classical SA, a metropolis rule [42] is frequently utilized
to determine the acceptance probability of an uphill move; the
CSA, in contrast, considers other current solutions along with the
solutions’ costs through a coupling term w in the state set g 2 S,
in which S denotes the set of all possible solutions [41,43]. The fol-
lowing expression represents the acceptance probability function,
Ag [41,43]:

Agðw; xi ! yiÞ ¼
exp½ðEðxiÞ �max

xi2g
EðxiÞÞ=Ta

k�

w
ð24Þ

where Ta
k stands for the acceptance temperature; xi and yi denote

the individual solutions and their corresponding probing solution,
respectively. The coupling term is defined as follows [41,43]:

w ¼
X
8
R

g

exp½ðEðxiÞ �max
xi2g

EðxiÞÞ=Ta
k� ð25Þ

The average mean square error (MSE) between the desired and
predicted output values, as defined by Eq. (26), was considered as
an objective function

MSE ¼ 1
n

X
i

di � pið Þ2 ð26Þ

where d and p are the target value and predicted output,
respectively.
Table 2
Optimized parameters of the developed LSSVM model by CSA [41] optimization
technique.

Parameter Optimized value

c 1.209042E+04
r2 1.99122

Fig. 2. Comparison between the applied data [10] and results of developed LS-SVM
model.



Table 3
Comparison of calculated values with typical data [10].

Pressure
(kPa)

Temperature
(K)

Reported
oxygen–steam
ratio data [10]

Predicted values
using LS-SVM
model

Absolute
relative
deviation (%)a

4053 975 1.225 1.215 0.77
4053 1025 1.775 1.750 1.4
4053 1075 2.525 2.503 0.85
2026.5 1125 4.675 4.659 0.33
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3. Results and discussion

3.1. Evaluation of developed models

In this study, we employed an efficient optimization method,
known as coupled simulated annealing, to determine the optimal
magnitudes of LS-SVM parameters (e.g., r2 and c) as reported in
Table 2.

Cross plots of the proposed model’s predictions versus the
database values from [10], is demonstrated in Fig. 2. As it is clear
in Fig. 2, almost all points lie on the bisector of the first quadrant
(45� line), which suggests validity of the developed model. In
addition, relative deviations between the outputs of developed
models and corresponding utilized data are depicted in Fig. 3.
Fig. 4 shows the performance of proposed tool for the prediction
of oxygen–steam ratio as a function of pressure for various operat-
ing temperatures with literature reported data [10]. Table 3 shows
the proposed method yields accurate results with average absolute
deviation percentage of less than 0.5% in comparison with
Fig. 3. Relative deviation of the predicted values from applied database [10].

Fig. 4. Performance of proposed method for prediction of oxygen–steam ratio in
comparison with database [10].
literature reported data [10]. To make a judgment based on results
and plots, it can be concluded that the developed methods are
sufficiently accurate for estimating oxygen–steam ratio in coal
gasification process.

The powerful model introduced in this paper would be a quick,
accurate and simple way for engineers and researchers to
effectively monitor oxygen–steam ratio at various operating condi-
tions without implementing laboratory or/and plant trials.
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Fig. 5. Sensitivity analysis of the LS-SVM model and the dependence of oxygen–
steam ratio on temperature and pressure.

101.3 1125 6.25 6.247 0.05
4053 1150 4.1 4.057 1.04
2026.5 1150 5.35 5.300 0.92
4053 1175 4.7 4.676 0.5
2026.5 1175 6.025 6.002 0.37
101.3 1175 7.95 7.929 0.26
4053 1200 5.3 5.333 0.62
3039.8 1200 6 5.967 0.55
2026.5 1200 6.7 6.745 0.68
101.3 1200 8.8 8.713 0.99
4053 1225 6 6.014 0.24
3039.8 1225 6.675 6.679 0.07
2026.5 1225 7.45 7.501 0.69
2026.5 1250 8.2 8.240 0.49
101.3 1250 9.95 10.053 1.03
4053 1275 7.4 7.389 0.15
3039.8 1275 8.025 8.030 0.07
4053 1350 9.2 9.245 0.49
3039.8 1350 9.65 9.691 0.43
2026.5 1350 10.45 10.534 0.81
101.3 1350 11.5 11.582 0.72
4053 1450 10.85 10.898 0.45
3039.8 1450 11.15 11.157 0.07
2026.5 1450 11.55 11.545 0.04
101.3 1450 12 12.002 0.02
4053 1475 11.125 11.156 0.28
2026.5 1500 11.9 11.893 0.05
101.3 1500 12.1 12.098 0.02
Average absolute deviation (%) 0.48

a Absolute relative deviation ð%Þ ¼ jReported value�Predicted valuej
Reported value � 100.
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3.2. Sensitivity analysis

This section aims to determine the sensitivity of the LS-SVM
model predictions to changes in the independent variables (i.e.,
temperature and pressure). As a result of the analysis, a relative
variable impact value was allocated to every input variable. The
analysis results provide users useful insights into the effects of
all variables involved in the system. Herein, variable impact analy-
sis was conducted using the Spearman and Pearson techniques
[44]. Fig. 5 presents the degree of correlation between the input
variables on the oxygen–steam ratio. These correlation coefficients
have values ranging from �1 to +1. A value of +1 and �1 imply that
the variables have a perfect increasing and decreasing linear
relationship, respectively [35,45]. Fig. 5 reveals a low negative
impact of pressure and a high positive impact of temperature on
oxygen–steam ratio. These findings are in accordance with the
known effects of pressure and temperature on oxygen–steam ratio
in coal gasification process.
4. Conclusions

In this work, a rigorous modeling approach was presented that
assists engineers for fast and accurate computation of the ratio of
oxygen to steam ratio needed to sustain zero total enthalpy change
in coal gasification process by means of LS-SVM modeling algo-
rithm. The developed tool appears to considerably assist process
system engineers/researchers who are working on the design and
operational aspects of coal gasification plants. In addition, the com-
parison of real data and estimated values clearly demonstrates the
precision of the predictive model that can be simply utilized for
practical implications in coal processing industry. It is expected
that this accurate tool will pave the way accurate predictions of
oxygen–steam ratio critical in coal gasification processes which
can be used by engineers for process monitoring.
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