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ABSTRACT: This study presents a global sensitivity analysis to simplify a
surrogate-model-based uncertainty quanti�cation of a crude distillation unit
with a large number of uncertainties. To overcome the computational limita-
tion of a conventional surrogate model-based approach where the number of
simulations required grows exponentially as the input dimension increases, a
novel two-stage approach was proposed in this study: in the �rst stage, a
multiplicative dimensional reduction method is applied to identify factors that
exert the highest in�uence on the model outputs. In the second stage, the
Gaussian process regression is exploited for uncertainty quanti�cation from
the simpli�ed model derived in the �rst stage. As a result, the computational
e�orts for uncertainty quanti�cation were signi�cantly reduced (approximately
more than 95%) compared to the conventional Quasi Monte Carlo, while the
predicted density functions by the proposed method closely matched with
those from the Quasi Monte Carlo. The proposed two-stage approach was
executed for sensitivity analysis and uncertainty quanti�cation of a crude distillation unit by an interface between MATLAB and
HYSYS. The economic revenue and the operating cost per unit of crude oil processed were selected as the output of interests for
the crude distillation unit. The global sensitivity analysis result showed that the �ow rates of crude oil and naphtha products are
critical for both the economic revenue and the operating cost.

1. INTRODUCTION
The use of fossil resources for the production of fuels and
commodity chemicals has been a focal point of discussion for the
past few decades. It is anticipated that the total amount of fossil
fuels (coal, natural gas, and oil) available on the earth can support
various needs for at least another hundred years.1 Identifying a
pro�table/e�cient production process which facilitates higher
cost savings and is safer and cleaner is a crucial task for engineers.
Most industries would rather maximize available resources for
maximum pro�tability than opt for large-scale expansion.2 A com-
mon approach that has gained widespread application in this
regard is optimization, which is a major quantitative tool in
decision-making for process availability.3 Mathematical models,
which elucidate the relationship among input variables, play a
vital role in the �nal design to comply with the safety and ser-
viceability constraints.4

A crude distillation unit (CDU) is among the largest energy-
consuming processes because of the large amount of energy
consumption and high operating temperature.5 It is reported that
the operation of the CDU and vacuum distillation consumes over
35% of the energy required in the re�nery plants.6 Therefore,
research on crude distillation systems has received considerable
attention. In optimizing the CDU, the objective is to maximize
the pro�ts of a CDU while minimizing the energy consumption
(resulting in reduced CO2 emissions), subject to constraints on
the quality of the products.7 Previous studies recommended that

the separation and energy performance of distillation processes
can be represented by di�erent types of models such as rigorous,
simpli�ed, and statistical/empirical models.8�10 Nevertheless,
the development of such models generally requires a signi�cant
amount of e�ort because this involves various di�erential and
algebraic equations associated with a large number of input
variables. Simultaneously, uncertainties are sometimes correlated
in the process design because of the connected process and
various random factors. The complex nature of CDUs, including
their interactions with the associated heat recovery network, the
large number of degrees of freedom, and a large number of uncer-
tainties in feed mixture and process conditions, renders their
optimization a highly challenging task.

The goal of uncertainty quanti�cation,11 and in particular, a pri-
ority in the design and modeling of an e�cient process, is to assess
the e�ect of the input uncertainties on the model output and
consequently, on the system performance.12 Certain parameters
such as the crude oil property and tray e�ciency, which depend on
physical properties (e.g., tray hydraulics, liquid mixing and entrain-
ment), are likely to illustrate a natural disturbance, which is not
revealed in advance (this is referred to as an aleatory uncertainty).
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However, certain other factors such as pressure, temperature, and
�ow rate, which are likely to exhibit a unique value, are directly
measurable and susceptible to lack of knowledge (epistemic uncer-
tainty). The former are typically observed to be irreducible, while
the latter can be quanti�ed and minimized.13 For considering the
unknown factors, a global sensitivity analysis (SA), which is a
widely used technique for selecting representative parameters
from mathematical models,14,15 is required to reduce their quantity
and select the ones to be incorporated.

Monte Carlo (MC)16 and Quasi Monte Carlo (QMC) methods
are representative probabilistic approaches for the propagation of
uncertainties in the model inputs to its output.17 However, not-
withstanding the simplicity of their implementation, the mean
convergence rate was estimated to be in the order of O(1/�M),
where M is the number of samples; this renders MC/QMC-
based approaches computationally expensive, and they are used
only as the �nal option. To overcome the problem, a convenient-
to-evaluate function may be used to replace the original compu-
tational model.18 Shen and Braatz19 developed a new polynomial
chaos-based algorithm on the design of batch and continuous-
�ow chemical reactors with probability uncertainties. Duong
et al.20 studied the uncertainty quanti�cation (UQ) and SA of
chemical processes using the standard polynomial chaos method
for systems with a small number of random inputs. Using an
e�cient-to-evaluate surrogate model, Celse et al.21 investigated
the in�uence of each input on the construction of the model of
the hydrodesulfurization/hydrodenitrogenation reaction in a
vacuum gas oil hydrotreatment. Duong et al.22 and Minh et al.23

recently developed a two-stage approach using a compressive
polynomial chaos method to overcome the computational limitation
in a system with a moderate/large number of uncertain parameters.

Surrogate models, also known as meta-models, can approx-
imate detailed mechanistic models, which are capable of simpli-
fying highly nonlinear and computationally expensive problems.
The Kriging technique, which originated from interpolating geo-
graphical data in mining, is also known as Gaussian process (GP)
modeling.24,25 In general, the GP modeling is a Bayesian approach,
which provides a complete posterior distribution over feasible
functions from the observed data. It is completely determined by
its mean and covariance function. The mean is used to encode
the prior knowledge of the output. The GP prediction is a
distribution. Use of the predictive GP can facilitate the selection
of the new data. A high predictive variance implies an absence of
the training data, whereas, a low predictive variance implies a
high con�dence in the model. Note that the higher con�dence in
the model results in a more reliable design. The covariance
function is used to capture a straightforward intuition: if the
inputs are close, the function outputs are likely to be closed. It can
also be used to encode the periodic property of the output. They
are widely used in diverse �elds of engineering, such as structural
reliability analysis and design optimization.26�28

For the Gaussian process regression (GPR), however, the
number of hyperparameters increases with the dimension of the
input space so that their statistical inference can be problematic
in high-dimensional situations.29 The number of simulations
required to learn a generic multivariate response grows expo-
nentially as the input dimension increases. This is because the
GPR de�nes an input space correlation with Euclidean (2-norm)
distance. Since the Euclidean distance becomes noninformative
as the dimensionality of uncertain inputs increases,30 more
evaluations of the expensive-to-evaluate models are required to
construct an accurate GPR. Therefore, it is desirable to reduce
the dimension of the problem from the perspectives of both

accuracy and e�ciency. In this study, a two-stage approach was
presented to tackle this issue: �rst, a multiplicative dimensional
reduction method is used for detecting nonin�uential inputs,
then a GPR model is constructed with the in�uential inputs only.
Although the GPR possesses the automatic relevant determi-
nation mechanism wherein the kernel scales can be used to deter-
mine the relevancy of inputs, this approach may be not reliable.23

This work aims to overcome a current limitation of the con-
ventional GPR where the number of model evaluations grows
exponentially and may not be applicable to systems with a
moderate/large number of uncertainties such as a CDU. One of
the main contributions of this work is to propose a novel two-
stage approach by combining the multiplicative dimensional reduc-
tion with Gaussian process kriging regression methods. The
proposed two-stage approach could remarkably reduce the
simulation time (one of the greater burdens in handling UQ) so
that the UQ for complex systems with a large/moderate number
of uncertainties can be popular in practice. Another main
contribution of this work is to carry out a global SA and UQ of
the CDU which is highly nonlinear and complex. In terms of our
understanding, there is no report of the global SA that includes a
discussion on the uncertain inputs e�ects on the process per-
formance for the conventional CDU, particularly with a large
number of random variables. Thus, this work is expected to describe
the uncertain e�ects of the process inputs on main process interests
of the CDU such as the economic revenue and operating costs. Also,
this approach attracts considerable attention in re�nery modeling
and optimization because it directly determines the quality of
�nal products and its pro�tability.

This paper is organized as follows: section 2 addresses the
global SA of the multiplicative dimensional reduction method,
and subsequently, the UQ through the GPR of the identi�ed
in�uential factors from the previous step. Section 3 brie�y
describes the CDU and analysis methods of the system including
the economic revenue and operating costs. Section 4 discusses
the results, and section 5 concludes the study.

2. METHODOLOGIES
UQ requires a large number of original model evaluations, par-
ticularly for high-nonlinear and high-dimensional problems. The
GPR is a Bayesian modeling technique for UQ purposes that has
recently attracted engineers from di�erent �elds such as bio-
logical, chemical, and control engineering24,31,32 owing to its
computational e�ciency. Although the GPR is �exible, the
optimizing approach by selecting hyperparameters either got
stuck in local solutions24,31 or achieved nonsatisfactory results
when it is applied to model systems with a large number of
random inputs. To address these problems, an e�cient two-stage
UQ method, which combines the multiplicative dimensional
reduction method (MDRM) with the GPR, is proposed in this
study. In the proposed method, the MDRM is �rst adopted by
determining critical inputs for a model-dimension reduction. The
meta-model by the GPR is then consequently generated corre-
sponding to the critical inputs determined in the previous step.
The work intends to explain the e�cient and practical framework,
and the typical steps involved in SA and UQ in order to reduce the
computational e�orts.

2.1. MDRM for SA. SA is a procedure aimed at determining
the inputs that are relatively more critical than the others. It is of
two types: local SA and global SA. The �rst utilizes the infor-
mation from the partial derivative of the model output with
respect to the model inputs. Thus, it is used only to study the
vicinity of a nominal value of the selected inputs. That is, the
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are shown in Figure S1 (see Supporting Information); these
products are the naphtha product, three side products (kerosene,
diesel, and atmospheric gas oil), and the residues at the bottom of
the column. In this study, it is assumed that the light and heavy
straight run naphtha streams are mixed to be the naphtha product
stream. It is also assumed that the input crude oil is at a tem-
perature of 232.2 °C and pressure of 5.17 bar, operating at
100 000 barrels/day.

Figure 2 demonstrates a rigorous CDU model as a substitute
for the actual plant.35 The tower consists of 29 stages in the main

shell and three side columns associated with three pump-arounds
for stripping the middle products. Furthermore, a pre�ash sepa-
rator is used to enhance the separation e�ciency in separating
the light components from the liquid phase.36 After leaving the
pre�ash separator, the crude oil enters the CDU furnace (see
Figure 2). The crude is vaporized through the furnace in order
to recover the products from the side strippers. The outlet

temperature of the furnace is normally set so that the vaporized
fraction equals the sum of the column products plus a small
percentage. This small percentage excess is the “over-�ash,”
which indicates the amount of the heavy residues recovered in
the light fractions.37 The two-phase mixture enters the column at
333.4 °C and is �ashed in the bottom section (�ash zone).
Furthermore, a signi�cant amount of the main stripping steam is
included at the bottom, which serves to strip any residue and
prevent the excessive thermal cracking of crude oil because of the
high temperature at the �ash zone. Other light fractions of the
crude were retrieved by side strippers at di�erent locations using
steam or reboilers. Both the atmospheric gas oil and diesel side-
strippers use stripping steams, while the kerosene side-stripper
includes a reboiler. The presence of side coolers or pump-arounds
is an additional feature in the CDU. These units permit the
reduction of the condenser cooling requirements by reducing the
vapor �ow in the column and allowing for heat recovery. The
residue from the column contains valuable hydrocarbons, which
is typically further separated in a vacuum distillation column (not
discussed in this study).

3.1. Process Decision Variables. Rigorous models, which
simulate the distillation column according to the material and
energy balances as well as equilibrium relations in each stage of the
column,38 are su�ciently realistic to provide accurate predictions.39

In this work, Aspen HYSYS v10 is used to simulate the CDU. To
facilitate the data transfer required for the global SA and the UQ,
an interface between MATLAB and HYSYS is established using
the automation client�server application provided by HYSYS;
meanwhile, the algorithm is coded in MATLAB.

For UQ and SA, the inputs of the surrogate model are varied,
including the �ow rate of the crude and that of the main stripping
steam, product �ow rates, outlet temperature of crude oil from
the furnace, pump-around rates and their temperature changes,
stripping steam rates, and reboiler duty of the side strippers.
Sensitivity analysis indicates the parameters that are most in�u-
ential and are to be focused upon and those which can be
discarded. Furthermore, the UQ study can examine their relative
in�uences on the outputs. All the inputs are assumed to be
distributed uniformly or normally and to independently a�ect the
process performance (economic revenue and operating costs).
Table 2 lists all the uniformly distributed input variables asso-
ciated with the con�dence boundaries. Note that the normally

Figure 1. Cut distributions of crude oil.

Figure 2. Process �ow diagram of crude oil distillation unit.

Table 2. Boundaries of Random Inputs under Uniform
Uncertainties

variables base lower upper unit

crude oil 4166. 7 3958.3 4375.0 bbl/h
naphtha 958.3 910.4 1006.2 bbl/h
kerosene 387.5 368.1 406.9 bbl/h
diesel 802.1 762.0 842.2 bbl/h
AGO 187.5 178.1 196.9 bbl/h
PA1 2083.3 1979.2 2187.5 kmol/h
PA1Q 95.0 90.2 99.8 °C
PA2 1250.0 1187.5 1312.5 kmol/h
PA2Q 80.0 76.0 84.0 °C
PA3 1250.0 1187.5 1312.5 kmol/h
PA3Q 72.0 68.4 75.6 °C
Diesel steam 75.5 71.8 79.3 kmol/h
AGO steam 62.9 59.8 66.1 kmol/h
main steam 188.8 179.4 198.3 kmol/h
kerosene HP steam 157.1 149.3 165.0 kmol/h
hot crude temperature 343.3 326.1 360.5 °C
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distributed input variances, that is, the Gaussian uncertainties,
were also investigated in the case study without �xing product
�ow rates. In that case study, the same means and variances as in
the uniform case were used.

3.2. Objective functions in the CDU. The economic
revenue (ER) and operating cost (OP) per unit crude oil pro-
cessed are selected as the performance indicators for UQ and SA.
Fundamentally, the ER is estimated on the basis of the operating
costs in the column, as follows:40
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where Fj and Cj are the �ow rates and costs, respectively, of the jth
product; and Fsteam and Csteam are the �ow rates and costs,
respectively, of the low pressure steam. Qx and Cx are the heat
requirement and its utility cost, respectively. The estimation is
based on the assumption of 8600 h per year.

The ER is based on the product prices, raw material cost, and
utility costs to calculate the operating costs within a re�nery.
Furthermore, the �xed costs such as capital modi�cation, labor,
and maintenance were not considered in this study. Table 3 lists
the prices of the feed, products, and utility, respectively.

4. RESULTS AND DISCUSSIONS
Here, we address the UQ of a complex CDU by integrating a
rigorous simulation with a global SA. The column is simulated
rigorously in HYSYS, while the independent input variables are
uniformly or normally distributed. All the variables are linked in
a spreadsheet-variables window in HYSYS and executed to
MATLAB via the ActiveX/COM connection. The ER and the
OP were calculated as the outputs in HYSYS spreadsheet cells
and used for the global SA. The Sobol’s sensitivity indices were
derived in eq 11.

4.1. Global SA and UQ (Un�xed Product Flow Rates
with Uncertain Inputs of Uniform Distributions). The
independent input variables are uniformly varied along their
upper and lower boundaries. According to the MDRM, a set of
160 Gaussian Legendre quadrature nodes was generated from
the orthogonal polynomial toolbox42 passed to HYSYS. Figure 3
illustrates the percentage of the total SA indices obtained from
the MDRM, which indicates the in�uential factors for the two
outputs. The values of total SA indices are listed in Table S2 in
the Supporting Information. As a result, for the ER and OP, two
random variables such as the �ow rates of the crude oil and

naphtha products were detected as being critical. Other random
variables become nonin�uential factors that can be omitted in the
next stage.11

The e�ective detection of the nonin�uential inputs from the
SA step enables one to simplify the model. Two simulation sets of
size 500 and 300 were considered for training the GPR24 for the
ER and the OP, respectively. Because precise estimates of the
process outputs are not accessible, the results of the proposed
method were compared with those of the QMC method with a
su�cient number of simulations. For an accurate estimation of
the probability for the QMC method, the number of samples was
selected from Cherno� bound following Tempo et al.43 Figure 4

compares the density functions of the ER obtained by the GPR
(with 500 training data points) and by the QMC (with 10 000
simulations) methods with two in�uential random inputs (�ow
rates of crude oil and naphtha). Furthermore, these density
functions were compared with that by the QMC method with all
16 random inputs (using the 10 000 simulations from Halton
sequence). Similarly, as observed in Figure 5, the density func-
tions of the OP were obtained using the GPR and the QMC
methods with two critical random variables, namely, the �ow
rates of crude oil and naphtha product, which were then com-
pared with those by the QMC method with all 16 random inputs.
Table 4 lists the statistical properties and computational time
achieved by the proposed (MDRM + GPR) and QMC methods
for the ER and the OP. The computational time of the proposed
method includes the computational time for running 160 simu-
lations for SA permitted by the MDRM and for constructing two
surrogate GPR models with 500 quadrature nodes for UQ.

Table 3. Feed, Product, And Utility Prices40,41

items cost unit

crude oil 80.00 $/bbl
naphtha 136.00 $/bbl
kerosene 122.70 $/bbl
diesel 121.70 $/bbl
atmospheric gas oil 95.29 $/bbl
residue 89.71 $/bbl
�red heating 150.00 $/kJ
cooling water 5.25 $/kJ
kerosene HP steam 17.70 $/GJ
stripping steam 0.14 $/kmol

Figure 3. Percentage of total SA indices obtained by the MDRM for
(a) the ER and (b) the OP under uniform uncertainties.

Figure 4. Density pro�les of the ER obtained by the GPR and QMC
methods under uniform uncertainties.
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The QMC/MC methods require a large number of simulations
(approximately 10 000) to estimate the expected values, vari-
ances, and densities accurately; hence, they are computationally
expensive. As compared with the conventional QMC method,
the computation time was reduced by 95% in the proposed method.
Also, it was observed by comparing Figures 4 and 5 that the pro-
posed method can achieve acceptable results with only a small com-
putational cost in comparison with the conventional QMC method.

Figure 6 illustrates the accuracy of the surrogate GPR model
with respect to the number of �tting points by using the Nash�
Sutcli�e model e�ciency coe�cient. The closer the Q value is
to 1, the more accurate the surrogate can be. As seen in Figure 6,

the Q value seems to be constant at 500, which is a reasonable
value for the �tted points. The Nash�Sutcli�e model e�ciency
coe�cient is de�ned as44
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where �i is the prediction of the trained GPR model at the ith test
point of the test sample of size of 10 000 nodes from Halton
sequence, f i is the real model output from HYSYS with the ith test
point.

4.2. Global SA and UQ (Un�xed Product Flow Rates
and Uncertain Inputs of Gaussian Distributions). In this
case study, 16 input variables were assumed to be of Gaussian
distribution with the same means and variances as in the uniform
distribution case. The ER may vary due to numerous factors, and
thus, the re�nery engineers have to adjust its operations fre-
quently to maintain its pro�tability. Although the optimal solution
based on the nominal parameter values were assumed to achieve
the highest pro�t, it possibly leads to serious losses in other
cases. Therefore, a reliable optimization approach should take
uncertainties into account and guarantee that its solution is
robust enough to parameter perturbations. Table S3 in
Supporting Information shows the mean and standard deviation
of the parameter distributions for the objective. After identifying
the in�uential variables, the proposed GPR method used 500
training simulations. From the simulation result, the surrogate
GPR model was obtained for ER using the theory described in
section 2.2. Table 5 lists the statistical properties of the ER

obtained from the GPR and MC/QMC methods. To obtain
accurate estimations, the QMC sampling requires 10 000 simula-
tions on these 16 parameters independently according to their
probability distribution. Figure 7 compares the density functions
of the ER obtained from the proposed and QMC methods.

Figure 5. Density pro�les of the OP obtained by the GPR and QMC
methods under uniform uncertainties.

Table 4. Statistical Data and Simulation Time Obtained by the
Proposed and QMC Methods under Uniform Uncertainties

methods
no. of

simulations
run time

(sec)
mean �
(ER)

mean �
(OP)

QMC, 16 inputs for the ER
and OP

10 000 11 877.4 255 729.4 1742.66

QMC, two inputs for the ER 10 000 11 809.7 255 196.8
QMC, two inputs for the OP 10 000 11 820.2 1730.84
Proposed (MDRM + GPR)

for the ER
660 786.7 255 182.2

Proposed (MDRM + GPR)
for the OP

460 555.6 1730.62

Figure 6. Nash�Sutcli�e model e�ciency coe�cient vs number of
training points.

Table 5. Statistical Data and Simulation Time Obtained by the
Proposed and QMC Methods under Gaussian Uncertainties

methods
no. of

simulations
run time

(sec)
mean �
(ER)

QMC, 16 inputs 10 000 11 777.7 256 208.6
QMC, two inputs 10 000 11 36.4 257 483.7
proposed (MDRM + GPR) 660 775.8 257 416.2

Figure 7. Density pro�les of the ER obtained by the GPR and QMC
methods under Gaussian uncertainties.
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The results from the proposed method closely match with those
from the traditional QMC method. Note that the number of
simulations required by the proposed method is signi�cantly
lower than those by the QMC method (about 20 times). Also,
another unique advantage of the proposed method is that Sobol’s
sensitivity indices, which are used to identify the in�uential
inputs in the propagation of process uncertainty, can be obtained
directly from the surrogate analytical model. Thus, the number of
simulations is signi�cantly reduced from 10�100 times, which
leads to a drastic decrease in the computational e�orts needed for
UQ. Note that to obtain the Sobol indices by using the MC/QMC
methods, a huge number of simulations are required which
obstructs its application in a simplifying model for UQ. In this
example, the SA indices for the process output with respect to
16 uncertain inputs (see Table S4 in Supporting Information)
were obtained from the MDRM for the Gaussian uncertainties.
Interestingly, the SA indices identify two important inputs, the
�ow rates of crude oil feed, and naphtha products. Others are
nonin�uential and can be maintained at the median values for the
uncertainty propagation. It is worth noting that the Sobol indices
obtained from the Gaussian distribution were similar to those
estimated by uniformly distributed uncertainties. Note that in the
Gaussian distribution case, independent variables have no limits
of upper and lower boundaries (the mean and variance of the
input are selected to be equal to the case of uniform distri-
bution). For the case associated with independent variables as
continuous variables with upper and lower boundaries, the GPR
method can make the prediction when the inputs exceed the
�xed boundaries, and using eq 19, one can quantify the reliability
of the prediction at the outlier point. The variance � is expected
to be large in this case, which indicates the unreliable prediction.

4.3. Global SA and UQ (Fixed Product Flow Rates with
Uncertain Inputs of Uniform Distributions). In this study,
the product �ow rates of naphtha, diesel, kerosene, and AGO
were speci�ed at the upper bounds when the maximum �ow rates
of each product were obtained. Twelve random inputs were
run at 120 simulations with 120 G-Legendre quadrature nodes
to derive the Sobol indices for the outputs; Table S5 in
Supporting Information lists the Sobol’s total SA indices. As a
result, the �ow rate of the crude oil was the most in�uential factor
for both ER and OP when product �ow rates were �xed.

To train the GPR for the simpli�ed model, 100 training data
points were used (from Halton sequence). Figures 8 and 9

present the density function results for the ER and the OP,
respectively. The density functions of the ER obtained by the
GPR and QMC methods (with 10 000 simulations) were com-
pared with those by the QMC method with all 12 random
inputs (using the 10 000 simulations from Halton sequence).
Similarly, the density functions of the OP obtained by the GPR
and QMC methods with one in�uential random variable (the
�ow rate of crude oil), were compared with those by the QMC
method with all 12 random inputs. A summary of the statisti-
cal results and computational time for this case is presented
in Table 6.

To summarize, to reduce the cost of simulations, one can
replace the rigorous simulation model with an inexpensive sur-
rogate based on conventional GPR. However, the number of
simulations required to learn a generic multivariate response can
increase signi�cantly as the input dimension increases. Furthermore,
the optimization of hyper-parameters for the GPR can be stuck
straightforwardly in a local solution when a large number of random
inputs are considered. This paper addresses the dimensionality
problem with a two-stage approach: First, the inputs are screened
with the MDRM method; second, the GPR is constructed with
respect to the critical inputs to reduce the number of simulations
required to learn the model. The proposed approach is used for
modeling the ER and the OP of CDU. Under this circumstance,
the result demonstrated that the �ow rates of crude oil and
naphtha product are critical for the ER and the OP. Prediction
results by the proposed method are veri�ed by comparison with
those of the QMC method. It is demonstrated that there is
precise agreement between the proposed and the QMC methods.
Moreover, the proposed method is computationally superior to
the standard QMC method.

Figure 8. Density pro�les of the ER obtained by the GPR and QMC
methods with �xed product �ow rates under uniform uncertainties.

Figure 9. Density pro�les of the OP obtained by the GPR and QMC
methods with �xed product �ow rates under uniform uncertainties.

Table 6. Statistical Data and Simulation Time Obtained by the
Proposed and QMC Methods with Fixed Product Flow Rates

methods
no. of

simulations
runtime
(sec)

mean �
(ER)

mean �
(OP)

QMC, 12 inputs 10 000 11 830.4 254 381.6 1721.16
QMC, one input 10 000 11 597.7 254 385.3
QMC, one input 10 000 11 528.5 1720.64
proposed (MDRM + GPR)

for the ER
220 264.6 254 382.9

proposed (MDRM + GPR)
for the OP

220 267.3 1720.75

Industrial & Engineering Chemistry Research Article

DOI: 10.1021/acs.iecr.7b05173
Ind. Eng. Chem. Res. 2018, 57, 5035�5044

5042

http://pubs.acs.org/doi/suppl/10.1021/acs.iecr.7b05173/suppl_file/ie7b05173_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.iecr.7b05173/suppl_file/ie7b05173_si_001.pdf
http://dx.doi.org/10.1021/acs.iecr.7b05173


5. CONCLUSIONS
This work focused on UQ and SA for testing the model
robustness against uncertainties in the CDU with the following
objectives: obtaining a better understanding of the e�ects of
inputs on the output, determining the key inputs that in�uence
the uncertainty of model outputs (such as the EP and OP), and
achieving model simpli�cation. To address a large number of
uncertainties in the CDU with the computational limitation, an
e�cient two-stage SA approach combining the MDRM and GPR
was presented and successfully applied to UQ and SA of complex
CDU problem. Density functions of the outputs predicted by the
Gaussian regression from the simpli�ed model showed a good
agreement with those of the conventional QMC methods. The
proposed method is superior to the popular QMC approach
primarily in terms of the computational e�orts (approximately
more than 95%). The SA and UQ results indicate that the ER and
the OP are mostly in�uenced by the �uctuation of the �ow rates
of crude oil and light fraction (e.g., naphtha) in the CDU. The
proposed approach is expected to o�er an e�ective method to
address both SA and UQ for other complex chemical processes
associated with a large number of uncertainties. In future work,
another study of SA is planned in order to focus on the sched-
uling of the blending of crude oils to emulate an actual re�nery
optimization process and therefore provide more realistic results
regarding the practical application.
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